Advertisement

Applied Microbiology and Biotechnology

, Volume 74, Issue 6, pp 1333–1341 | Cite as

Random segment deletion based on IS31831 and Cre/loxP excision system in Corynebacterium glutamicum

  • Yota Tsuge
  • Nobuaki Suzuki
  • Masayuki Inui
  • Hideaki YukawaEmail author
Genomics and Proteomics

Abstract

A simple and random genome deletion method combining insertion sequence (IS) element IS31831 and the Cre/loxP excision system generated 42 Corynebacterium glutamicum mutants (0.2–186 kb). A total of 393.6 kb (11.9% of C. glutamicum R genome) coding for 331 genes was confirmed to be nonessential under standard laboratory conditions. The deletion strains, generated using only two vectors, varied not only in their lengths but also the location of the deletion along the C. glutamicum R genome. By comparing and analyzing the generated deletion strains, identification of nonessential genes, the roles of genes of hitherto unknown function, and gene–gene interactions can be easily and efficiently determined.

Keywords

Corynebacterium glutamicum Cre/loxP IS element Genomic engineering Random genome deletion 

Notes

Acknowledgment

We thank Prof. R. H. Doi (University of California at Davis) and Dr. C. Omumasaba (RITE) for critical reading of the manuscript. We are grateful to Dr. H. Nonaka (RITE, present Mie University) for providing us the useful website about C. glutamicum R genome information. This study was carried out as a part of the Project for Development of a Technological Infrastructure for Industrial Bioprocesses by the Ministry of Economy, Trade and Industry and was funded by the New Energy and Industrial Technology Development Organization.

Supplementary material

253_2006_788_MOESM1_ESM.doc (44 kb)
Supplementary Table 1Primers used for verification of deletion (DOC 44 kb)
253_2006_788_MOESM2_ESM.doc (98 kb)
Supplementary Table 2Deleted genes (DOC 100 kb)

References

  1. Blattner FR, Plunkett G III, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y (1997) The complete genome sequence of Escherichia coli K-12. Science 277:1453–1474CrossRefGoogle Scholar
  2. Bonamy C, Labarre J, Reyes O, Leblon G (1994) Identification of IS1206, a Corynebacterium glutamicum IS3-related insertion sequence and phylogenetic analysis. Mol Microbiol 14:571–581CrossRefGoogle Scholar
  3. Bonamy C, Labarre J, Cazaubon L, Jacob C, Le Bohec F, Reyes O, Leblon G (2003) The mobile element IS1207 of Brevibacterium lactofermentum ATCC21086: isolation and use in the construction of Tn5531, a versatile transposon for insertional mutagenesis of Corynebacterium glutamicum. J Biotechnol 104:301–309CrossRefGoogle Scholar
  4. Cerdeno-Tarraga AM, Efstratiou A, Dover LG, Holden MT, Pallen M, Bentley SD, Besra GS, Churcher C, James KD, De Zoysa A, Chillingworth T, Cronin A, Dowd L, Feltwell T, Hamlin N, Holroyd S, Jagels K, Moule S, Quail MA, Rabbinowitsch E, Rutherford KM, Thomson NR, Unwin L, Whitehead S, Barrell BG, Parkhill J (2003) The complete genome sequence and analysis of Corynebacterium diphtheriae NCTC13129. Nucleic Acids Res 31:6516–6523CrossRefGoogle Scholar
  5. Goryshin IY, Jendrisak J, Hoffman LM, Meis R, Reznikoff WS (2000) Insertional transposon mutagenesis by electroporation of released Tn5 transposition complexes. Nat Biotechnol 18:97–100CrossRefGoogle Scholar
  6. Hermann T (2003) Industrial production of amino acids by coryneform bacteria. J Biotechnol 104:155–172CrossRefGoogle Scholar
  7. Hutchison CA, Peterson SN, Gill SR, Cline RT, White O, Fraser CM, Smith HO, Venter JC (1999) Global transposon mutagenesis and a minimal Mycoplasma genome. Science 286:2165–2169CrossRefGoogle Scholar
  8. Ikeda M, Nakagawa S (2003) The Corynebacterium glutamicum genome: features and impacts on biotechnological processes. Appl Microbiol Biotechnol 62:99–109CrossRefGoogle Scholar
  9. Inui M, Tsuge Y, Suzuki N, Vertès AA, Yukawa H (2005) Isolation and characterization of a native composite transposon, Tn14751, carrying 174 kilobases of Corynebacterium glutamicum chromosomal DNA. Appl Environ Microbiol 71:407–416CrossRefGoogle Scholar
  10. Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, Dusch N, Eggeling L, Eikmanns BJ, Gaigalat L, Goesmann A, Hartmann M, Huthmacher K, Kramer R, Linke B, McHardy AC, Meyer F, Mockel B, Pfefferle W, Puhler A, Rey DA, Ruckert C, Rupp O, Sahm H, Wendisch VF, Wiegrabe I, Tauch A (2003) The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of l-aspartate-derived amino acids and vitamins. J Biotechnol 104:5–25CrossRefGoogle Scholar
  11. Kang Y, Durfee T, Glasner JD, Qiu Y, Frisch D, Winterberg KM, Blattner FR (2004) Systematic mutagenesis of the Escherichia coli genome. J Bacteriol 186:4921–4930CrossRefGoogle Scholar
  12. Kinoshita S (1985) Glutamic acid bacteria. In: Demain AL, Solomon NA (eds) Biology of industrial microorganisms cummings. London, pp 115–146Google Scholar
  13. Kotrba P, Inui M, Yukawa H (2001) The ptsI gene encoding enzyme I of the phosphotransferase system of Corynebacterium glutamicum. Biochem Biophys Res Commun 289:1307–1313CrossRefGoogle Scholar
  14. Kuhn R, Torres RM (2002) Cre/loxP recombination system and gene targeting. Methods Mol Biol 180:175–204PubMedPubMedCentralGoogle Scholar
  15. Nishio Y, Nakamura Y, Kawarabayasi Y, Usuda Y, Kimura E, Sugimoto S, Matsui K, Yamagishi A, Kikuchi H, Ikeo K, Gojobori T (2003) Comparative complete genome sequence analysis of the amino acid replacements responsible for the thermostability of Corynebacterium efficiens. Genome Res 13:1572–1579CrossRefGoogle Scholar
  16. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, NYGoogle Scholar
  17. Sternberg N, Sauer B, Hoess R, Abremski K (1986) Bacteriophage P1 cre gene and its regulatory region. Evidence for multiple promoters and for regulation by DNA methylation. J Mol Biol 187:197–212CrossRefGoogle Scholar
  18. Suzuki N, Tsuge Y, Inui M, Yukawa, H (2005a) Cre/loxP-mediated deletion system for large genome rearrangements in Corynebacterium glutamicum. Appl Microbiol Biotechnol 67:225–233CrossRefGoogle Scholar
  19. Suzuki N, Okayama S, Nonaka H, Tsuge Y, Inui M, Yukawa H (2005b) Large-scale engineering of the Corynebacterium glutamicum genome. Appl Environ Microbiol 71:3369–3372CrossRefGoogle Scholar
  20. Suzuki N, Nonaka H, Tsuge Y, Okayama S, Inui M, Yukawa H (2005c) Multiple large segment deletion method for Corynebacterium glutamicum. Appl Microbiol Biotechnol 69:151–161CrossRefGoogle Scholar
  21. Suzuki N, Nonaka H, Tsuge Y, Inui M, Yukawa H (2005d) New multiple-deletion method for the Corynebacterium glutamicum genome, using a mutant lox sequence. Appl Environ Microbiol 71:8472–8480CrossRefGoogle Scholar
  22. Suzuki N, Okai N, Nonaka H, Tsuge Y, Inui M, Yukawa H (2006) High-throughput transposon mutagenesis of Corynebacterium glutamicum and construction of a single-gene disruptant mutant library. Appl Environ Microbiol 72:3750–3755CrossRefGoogle Scholar
  23. Tauch A, Kaiser O, Hain T, Goesmann A, Weisshaar B, Albersmeier A, Bekel T, Bischoff N, Brune I, Chakraborty T, Kalinowski J, Meyer F, Rupp O, Schneiker S, Viehoever P, Puhler A (2005) Complete genome sequence and analysis of the multiresistant nosocomial pathogen Corynebacterium jeikeium K411, a lipid-requiring bacterium of the human skin flora. J Bacteriol 187:4671–4682CrossRefGoogle Scholar
  24. Taylor LA, Rose RE (1988) A correction in the nucleotide sequence of the Tn903 kanamycin resistance determinant in pUC4K. Nucleic Acids Res 16:358CrossRefGoogle Scholar
  25. Tsuge Y, Ninomiya K, Suzuki N, Inui M, Yukawa H (2005) A new insertion sequence, IS14999, from Corynebacterium glutamicum. Microbiology 151:501–508CrossRefGoogle Scholar
  26. Vertès AA, Inui M, Kobayashi M, Kurusu Y, Yukawa H (1993) Presence of mrr- and mcr-like restriction systems in coryneform bacteria. Res Microbiol 144:181–185CrossRefGoogle Scholar
  27. Vertès AA, Inui M, Kobayashi M, Kurusu Y, Yukawa H (1994) Isolation and characterization of IS31831, a transposable element from Corynebacterium glutamicum. Mol Microbiol 11:739–746CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Yota Tsuge
    • 1
    • 2
  • Nobuaki Suzuki
    • 1
  • Masayuki Inui
    • 1
  • Hideaki Yukawa
    • 1
    • 2
    Email author
  1. 1.Research Institute of Innovative Technology for the Earth (RITE)Kizu-cho, Soraku-gunJapan
  2. 2.Graduate School of Biological SciencesNara Institute of Science and Technology (NAIST)Ikoma-shiJapan

Personalised recommendations