Applied Microbiology and Biotechnology

, Volume 74, Issue 1, pp 1–12 | Cite as

Increased diversification of polyhydroxyalkanoates by modification reactions for industrial and medical applications

  • Baki HazerEmail author
  • Alexander Steinbüchel


A wide range of diverse polyhydroxyalkanoates, PHAs, is currently available due to the low substrate specificity of PHA synthases and subsequent modifications by chemical reactions. These polymers are promising materials for a number of different applications due to their biocompatibility and biodegradability. This review summarizes the large variability of PHAs regarding chemical structure and material properties that can be currently produced. In the first part, in vivo and in vitro biosynthesis processes for production of a large variety of different PHAs will be summarized with regard to obtaining saturated and unsaturated copolyesters and side chain functionalized polyesters, including brominated, hydroxylated, methyl-branched polyesters, and phenyl derivatives of polyesters. In the second part, established chemical modifications of PHAs will be summarized as that by means of grafting reactions and graft/block copolymerizations, as well as by chlorination, cross-linking, epoxidation, hydroxylation, and carboxylation, reactions yield further functionalized PHAs.


Chemical modifications of PHAs Copolyesters Microbial polyesters Poly(3-hydroxyalkanoate)s PHA PHA constituents 



This work was financially supported by TUBITAK (Turkey) grant no. 104M128. Studies of A.S. were supported by the grant provided by the Deutsche Forschungsgemeinschaft in the past.

Glossary of PHAs


medium chain length poly(3-hydroxyalkanoic acid)


















poly(3-hydroxy octanoate-co-3-hydroxy undecenoate)


poly(3-hydroxy-4-pentenoic acid)






poly(3-hydroxy-5-phenoxy valerate)


poly(3-hydroxy-6-phenyl hexanoate)


poly(3-hydroxy-p-methylphenoxy octanoate)


poly(3-hydroxy-p-nitrophenyl valerate)


poly(3-hydroxy-p-tolyl valerate)




short chain length poly(3-hydroxyalkanoic acid)








  1. Andrade AP, Witholt B, Hany R, Egli T, Li Z (2002) Preparation and characterization of enantiomerically pure telechelic diols from mcl-poly[(R)-3-hydroxyalkanoates]. Macromolecules 35:684–689CrossRefGoogle Scholar
  2. Arestogui SM, Aponte MA, Diaz E, Schröder E (1999) Bacterial polyesters produced by Pseudomonas oleovorans containing nitrophenyl groups. Macromolecules 32:2889–2895CrossRefGoogle Scholar
  3. Arkin AH, Hazer B (2002) Chemical modification of chlorinated microbial polyesters. Biomacromolecules 3:1327–1335CrossRefGoogle Scholar
  4. Arkin AH, Hazer B, Borcakli M (2000) Chlorination of poly-3-hydroxy alkanoates containing unsaturated side chains. Macromolecules 33:3219–3223CrossRefGoogle Scholar
  5. Arslan H, Hazer B, Yoon SC (2006) Grafting of poly(3-hydroxyalkanoate) and linoleic acid onto chitosan. J Appl Polym Sci (in press)Google Scholar
  6. Ashby RD, Foglia TA (1998) Poly(hydroxyalkanoate) biosynthesis from trigliceride substrates. Appl Microbiol Biotechnol 49:431–437CrossRefGoogle Scholar
  7. Ashby RD, Foglia TA, Solaiman DKY, Liu CK, Nunez A, Eggink G (2000) Viscoelastic properties of linseed oil-based medium chain length poly(hydroxyalkanoate) films: effects of epoxidation and curing. Int J Biol Macromol 27:355–361CrossRefGoogle Scholar
  8. Ballistreri A, Montauda G, Impallomeni G, Lenz RW, Ulmer HW, Fuller RC (1995) Synthesis and characterization of polyesters produced by Rhodospirillum rubrum from pentenoic acid. Macromolecules 28:3664–3671CrossRefGoogle Scholar
  9. Ballistreri A, Giuffrida M, Guglielmino SPP, Carnazza S, Ferreri A, Impallomeni G (2001) Biosynthesis and structural characterization of medium-chain-length poly(3-hydroxyalkanoates) produced by Pseudomonas aeruginosa from fatty acids. Int J Biol Macromol 29:107–114CrossRefGoogle Scholar
  10. Bear MM, Leboucher-Durand MA, Langlois V, Lenz RW, Goodwin S, Guerin P (1997) Bacterial poly-3-hydroxyalkenoates with epoxy groups in the side chains. React Funct Polym 34:65–77CrossRefGoogle Scholar
  11. Cakmakli B, Hazer B, Borcakli M (2001) Polystyreneperoxide and poly(methyl methacrylate) peroxide for grafting on unsaturated bacterial polyesters. Macromol Biosci 1:348–354CrossRefGoogle Scholar
  12. Choi MH, Yoon SC, Lenz RW (1999) Production of poly(3-hydroxybutyric acid-co-4-hydroxybutyric acid) and poly(4-hydroxybutyric acid) without subsequent degradation by Hydrogenophage pseudoflava. Appl Environ Microbiol 65:1570–1577Google Scholar
  13. Chung CW, Kim HW, Kim YB, Rhee YH (2003) Poly(ethylene glycol)-grafted poly(3-hydroxyundecenoate) networks for enhanced blood compatibility. Int J Biol Macromol 32:17–22CrossRefGoogle Scholar
  14. Constantin M, Simionescu CI, Carpov A, Samain E, Driguez H (1999) Chemical modification of poly(hydroxyalkanoates) copolymers bearing pendant sugars. Macromol Rapid Commun 20:91–94CrossRefGoogle Scholar
  15. Curley JM, Hazer B, Lenz RW, Fuller RC (1996) Production of poly(3-hydroxyalkanoates) containing aromatic substituents by Pseudomonas oleovorans. Macromolecules 29:1762–1766CrossRefGoogle Scholar
  16. Deng XM, Hao JY (2001) Synthesis and characterization of poly(3-hydroxybutyrate) macromer of bacterial origin. Eur Polym J 37:211–214CrossRefGoogle Scholar
  17. D’Haene P, Remsen EE, Asrar J (1999) Preparation and characterization of a branched bacterial polyester. Macromolecules 32:5229–5235CrossRefGoogle Scholar
  18. Doi Y (1990) Microbial polyesters. VCH, New YorkGoogle Scholar
  19. Doi Y, Segawa A, Kunioka M (1990) Biosynthesis and characterization of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) in Alcaligenes eutrophus. Int J Biol Macromol 12:106–111CrossRefGoogle Scholar
  20. Doi Y, Kitamura S, Abe H (1995) Microbial synthesis and characterization of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). Macromolecules 28:4822–4828CrossRefGoogle Scholar
  21. Dufresne A, Reche L, Marchessault RH, Lacroix M (2001) Gamma-ray crosslinking of poly(hydroxyoctanoate-co-undecenoate). Int J Biol Macromol 29:73–82CrossRefGoogle Scholar
  22. Eggink G, van der Wal H, Huijberts GNM, de Waard P (1993) Oleic acid as substrate for poly-3-hydroxyalkanoate formation in Alcaligenes eutrophus and Pseudomonas putida. Ind Crops Prod 1:157–163CrossRefGoogle Scholar
  23. Eroğlu MS, Çaykara T, Hazer B (1998) Gamma rays induced grafting of methyl methacrylate onto poly(β-hydroxynonanoate). Polym Bull 41:53–60CrossRefGoogle Scholar
  24. Eroğlu MS, Hazer B, Ozturk T, Caykara T (2005) Hydroxylation of pendant vinyl groups of poly(3-hydroxy undec-10-enoate) in high yield. J Appl Polym Sci 97:2132–2139CrossRefGoogle Scholar
  25. Feng L, Yoshie N, Asakawa N, Inoue Y (2004) Comonomer-unit compositions, physical properties and biodegradability of bacterial copolyhydroxyalkanoates. Macromol Biosci 4:186–198CrossRefGoogle Scholar
  26. Förster S, Antonietti M (1998) Amphiphilic block copolymers in structure-controlled nanomaterial hybrids. Adv Mater 10:195–217CrossRefGoogle Scholar
  27. Fritzsche K, Lenz RW, Fuller RC (1990a) An unusual bacterial polyester with a phenyl pendant group. Makromol Chem 191:1957–1965CrossRefGoogle Scholar
  28. Fritzsche K, Lenz RW, Fuller RC (1990b) Bacterial polyesters containing branched poly(β-hydroxyalkanoate) units. Int J Biol Macromol 12:92–101CrossRefGoogle Scholar
  29. Fukui T, Abe H, Doi Y (2002) Engineering of Ralstonia eutropha for production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) from fructose and solid-state propserties of the copolymer. Biomacromolecules 3:618–624CrossRefGoogle Scholar
  30. Gagnon KD, Lenz RW, Farris RJ, Fuller RC (1994a) Chemical modification of bacterial elastomers: 1. Peroxide crosslinking. Polymer 35:4358–4367CrossRefGoogle Scholar
  31. Gagnon KD, Lenz RW, Farris RJ, Fuller RC (1994b) Chemical modification of bacterial elastomers: 2. Sulfur vulcanization. Polymer 35:4368–4375CrossRefGoogle Scholar
  32. Gerngross TU, Martin DP (1995) Enzyme-catalyzed synthesis of poly[(R)-(−)-3-hydroxybutyrate]: formation of macroscopic granules in vitro. Proc Natl Acad Sci USA 92:6279–6283CrossRefGoogle Scholar
  33. Grassie N, Murray EJ, Holmes PA (1984) The thermal degradation of poly(-(d)-β-hydroxybutyric acid): part 3—the reaction mechanism. Polym Degrad Stab 6:127–134CrossRefGoogle Scholar
  34. Grondahl L, Chandler-Temple A, Trau M (2005) Polymeric grafting of acrylic acid onto poly(3-hydroxybutyrate-co-valerate): surface functionalization for tissue engineering applications. Biomacromolecules 6:2197–2203CrossRefGoogle Scholar
  35. Gross RA, DeMello C, Lenz RW, Brandle H, Fuller RC (1989) Biosynthesis and characterization of poly(β-hydroxyalkanoates) produced by Pseudomonas oleovorans. Macromolecules 22:1106–1115CrossRefGoogle Scholar
  36. Hany R, Böhlen C, Geiger T, Hartmann R, Kawada J, Schimid M, Zinn M, Marchessault RH (2004) Chemical synthesis of crystalline comb polymers from olefinic medium-chain-length poly(3-hydroxyalkanoates). Macromolecules 37:385–389CrossRefGoogle Scholar
  37. Hao J, Deng X (2001) Semi-interpenetrating networks of bacterial poly(3-hydroxybutyrate) with net-poly(ethylene glycol). Polymer 42:4091–4097CrossRefGoogle Scholar
  38. Hartmann R, Hany R, Geiger T, Egli T, Witholt B, Zinn M (2004) Tailored biosynthesis of olefinic medium-chain-length poly[(R)-3-hydroxyalkanoates] in Pseudomonas putida Gpo1 with improved thermal properties. Macromolecules 37:6780–6785CrossRefGoogle Scholar
  39. Hartmann R, Hany R, Pletscher E, Ritter A, Witholt B, Zinn M (2006) Tailor-made olefinic medium-chain-length poly[(R)-3-hydroxyalkanoates] by Pseudomonas putida Gpo1: batch versus chemostat production. Biotechnol Bioeng 93:737–746CrossRefGoogle Scholar
  40. Hazer B (1985) Multiblock copolymers by polymeric initiators via free radical mechanism. Angew Makromol Chem 129:31–41CrossRefGoogle Scholar
  41. Hazer B (1987) Polymerization of vinyl monomers by a new oligoperoxide. Oligo (adipoyl 5-peroxy 2,5-dimethyl n hexyl) peroxide). J Polym Sci Polym Chem Ed 25:3349–3354CrossRefGoogle Scholar
  42. Hazer B (1989) Synthesis and characterization of block copolymers. In: Cheremisinoff NP (ed) Handbook of polymer science and engineering, vol 1. Marcel Dekker, New York, pp 133–176Google Scholar
  43. Hazer B (1991) Synthesis of PS-PEG and PMMA-PEG branched block copolymers by macroinimers. J Macromol Sci Pure Appl Chem A28:47–52Google Scholar
  44. Hazer B (1994) Preparation of polystyrene-poly(β-hydroxynonanoate) graft copolymers. Polym Bull 33:431–438CrossRefGoogle Scholar
  45. Hazer B (1995) Grafting reactions onto polymer backbone with polymeric initiator. J Macromol Sci Pure Appl Chem A32(5, 6):679–685Google Scholar
  46. Hazer B (1996a) Macromonomeric initiators. In: Salamone JC (ed) Polymeric materials encyclopedia, vol 6. CRC Press, Boca Raton, pp 3911–3918Google Scholar
  47. Hazer B (1996b) Poly(β-hydroxynonanoate) and polystyrene or poly(methylmethacrylate) graft copolymers : microstructure characteristics and mechanical and thermal behavior. Macromol Chem Phys 197:431–441CrossRefGoogle Scholar
  48. Hazer B (1997) Macrointermediates for block and graft copolymers. In: Cheremisinoff NP (ed) Handbook of engineering polymeric materials. Marcel Dekker, New York, pp 725–734Google Scholar
  49. Hazer B (2002) Chemical modification of bacterial polyester. Curr Trends Polym Sci 7:131–138Google Scholar
  50. Hazer B (2003) Chemical modification of synthetic and biosynthetic polyesters. In: Steinbüchel A (ed) Biopolymers, vol 10. Wiley–VCH, Weinheim, pp 181–208Google Scholar
  51. Hazer B, Baysal BM (1986) Preparation of block copolymers using a new polymeric peroxycarbamate. Polymer 27:961–986CrossRefGoogle Scholar
  52. Hazer B, Kurt A (1995) Polymerization kinetics of styrene by oligododecandioylperoxide, ODDP, and synthesis of poly(styrene-g-butadiene) graft copolymers. Eur Polym J 31:449–503CrossRefGoogle Scholar
  53. Hazer B, Lenz RW, Fuller RC (1994a) Biosynthesis of methyl branched poly(β-hydroxy alkanoate)s with Pseudomonas oleovorans. Macromolecules 27:45–49CrossRefGoogle Scholar
  54. Hazer B, Erdem B, Lenz RW (1994b) Styrene polymerization with some new macro or macromer initiators having PEG units. J Polym Sci A Polym Chem 32:1739–1746CrossRefGoogle Scholar
  55. Hazer B, Lenz RW, Fuller RC (1996) Production of some new biopolyesters containing aromatic substituents by either Pseudomonas oleovorans or Pseudomonas putida. Polymer 37:5951–5957CrossRefGoogle Scholar
  56. Hazer B, Torul O, Borcakli M, Lenz RW, Fuller RC, Goodwin SD (1998) Bacterial production of polyesters from free fatty acids obtained from natural oils by Pseudomonas oleovorans. J Environ Polym Degrad 6:109–113CrossRefGoogle Scholar
  57. Hazer B, Lenz RW, Çakmaklı B, Borcaklı M, Koçer H (1999) Preparation of poly(ethylene glycol) grafted poly(3-hydroxyalkanoate)s. Macromol Chem Phys 200:1903–1907CrossRefGoogle Scholar
  58. Hazer B, Demirel SI, Borcakli M, Eroğlu MS, Cakmak M, Erman B (2001) Free radical crosslinking of unsaturated bacterial polyester obtained from soybean oily acids. Polym Bull 46:389–394CrossRefGoogle Scholar
  59. Hirt TD, Neuenschwander P, Suter UW (1996) Telechelic diols from poly[(R)-3-hydroxy-butyric acid] and poly[(R)-3-hydroxybutyric acid-co-[(R)-3-hydroxyvaleric acid]. Macromol Chem Phys 197:1609–1614CrossRefGoogle Scholar
  60. Hrabak O (1992) Industrial production of poly-β-hydroxybutyrate. FEMS Microbiol Rev 103:251–256Google Scholar
  61. İbaoğlu K, Hazer B, Arkin AH, Lenz RW (2000) Production of poly-3-hydroxyalkanoates from methyl branched alkanoic acids by Pseudomonas oleovorans. Bulletin of the Chemists and Technologists of Macedonia 19:41–48Google Scholar
  62. Ilter S, Hazer B, Borcakli M, Atici M (2001) Graft copolymerization of methyl methacrylate onto bacterial polyester containing unsaturated side chains. Macromol Chem Phys 202:2281–2286CrossRefGoogle Scholar
  63. Imamura T, Kenmoku T, Honma T, Kobayashi S, Yano T (2001) Direct biosynthesis of poly(3-hydroxyalkanoates) bearing epoxide groups. Int J Biol Macromol 29:95–301CrossRefGoogle Scholar
  64. Jiang T, Hu P (2001) Radiation-induced graft polymerization of isoprene onto polyhydroxybutyrate. Polym J 33:647–653CrossRefGoogle Scholar
  65. Jossek R, Reichelt R, Steinbüchel A (1998) In vitro biosynthesis of poly(3-hydroxybutyric acid) by using purified poly(hydroxyalkanoic acid) synthase of Chromatium vinosum. Appl Microbiol Biotechnol 49:258–266CrossRefGoogle Scholar
  66. Kamachi M, Zhang S, Goodwin S, Lenz RW (2001) Enzymatic polymerization and characterization of new poly(3-hydroxyalkanoate)s by a bacterial polymerase. Macromolecules 34:6889–6894CrossRefGoogle Scholar
  67. Kawada J, Lütke-Eversloh T, Steinbüchel A, Marchessault RH (2003) Physical properties of microbial polythioesters: characterization of poly(3-mercaptoalkanoates) synthesized by engineered Escherichia coli. Biomacromolecules 4:1698–1702CrossRefGoogle Scholar
  68. Kim YB, Lenz RW, Fuller RC (1992) Poly(β-hydroxyalkanoate) copolymers containing brominated repeating units produced by Pseudomonas oleovorans. Macromolecules 25:1852–1857CrossRefGoogle Scholar
  69. Kim YB, Lenz RW, Fuller RC (1995) Poly-3-hydroxyalkanoates containing unsaturated repeating units produced by Pseudomonas oleovorans. J Polym Sci A Polym Chem 33:1367–1374CrossRefGoogle Scholar
  70. Kim YB, Rhee YH, Han SH, Heo GS, Kim JS (1996) Poly-3-hydroxyalkanoates produced from Pseudomonas oleovorans grown with ω-phenoxyalkanoates. Macromolecules 29:3432–3435CrossRefGoogle Scholar
  71. Kim YB, Kim DY, Rhee YH (1999) PHAs produced by Pseudomonas putida and Pseudomonas oleovorans grown with n-alkanoic acids containing aromatic groups. Macromolecules 32:6058–6064CrossRefGoogle Scholar
  72. Kim DY, Kim YB, Rhee YH (2000) Evaluation of various carbon substrates for the biosynthesis of polyhydroxyalkanoates bearing functional groups by Pseudomonas putida. Int J Biol Macromol 28:23–29CrossRefGoogle Scholar
  73. Kim HW, Chung CW, Kim SS, Kim YB, Rhee YH (2002) Preparation and cell compatibility of acrylamid-grafted poly(3-hydroxyoctanoate). Int J Biol Macromol 30:129–135CrossRefGoogle Scholar
  74. Kim HW, Chung CW, Rhee YH (2005) UV-induced graft copolymerization of monoacrylate-poly(ethylene glycol) onto poly(3-hydroxyoctanoate) to reduce protein adsorption and platelet adhesion. Int J Biol Macromol 35:47–53CrossRefGoogle Scholar
  75. Koçer H, Borcaklı M, Demirel S, Hazer B (2003) Production of bacterial polyesters from some various new substrates by Alcaligenes eutrophus and Pseudomonas oleovorans. Turk J Chem 27:365–373Google Scholar
  76. Konig GJM, van Bilsen HMM, Lemstra PJ, Hazenberg W, Witholt B, Preusting H, van der Galien JG, Schirmer A, Jendrossek D (1994) A biodegradable rubber by crosslinking poly(hydroxyalkanoate) from Pseudomonas oleovorans. Polymer 35:2090–2097CrossRefGoogle Scholar
  77. Kukula H, Schlaad H, Antonietti M, Förster S (2002) The formation of polymer vesicles or “peptosomes” by polybutadiene-block-poly(l-glutamate)s in dilute aqueous solution. J Am Chem Soc 124:1658–1663CrossRefGoogle Scholar
  78. Kurth N, Renard E, Brachet F, Robic D, Guerin Ph, Bourbouze R (2002) Poly(3-hydroxyoctanoate) containing pendant carboxylic groups for the preparation of nanoparticles aimed at drug transport and release. Polymer 43:1095–1101CrossRefGoogle Scholar
  79. Lageveen RG, Huisman GW, Preusting H, Ketelaar P, Eggink G, Witholt B (1988) Formation of polyesters by Pseudomonas oleovorans: effect of substrates on formation and composition of poly-(R)-hydroxyalkanoates and poly-(R)-3-hydroxyalkenoates. Appl Environ Microbiol 54:2924–2932Google Scholar
  80. Laverty LJ, Gardlund ZG (1977) Poly(vinyl chloride)-poly(ethylene oxide) block copolymers: synthesis and characterization. J Polym Sci A Polym Chem 15:2001–2011Google Scholar
  81. Lee MY, Park WH (2000) Preparation of bacterial copolyesters. Macromol Chem Phys 201:2771–2774CrossRefGoogle Scholar
  82. Lee SH, Oh DH, Ahn WS, Lee Y, Choi J, Lee SY (2000a) Production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) by high-cell-density cultivation of Aeromonas hydrophila. Biotechnol Bioeng 67:240–244CrossRefGoogle Scholar
  83. Lee MY, Park WH, Lenz RW (2000b) Hydrophilic bacterial polyesters modified with pendant hydroxyl groups. Polymer 41:1703–1709CrossRefGoogle Scholar
  84. Lenz RW (1993) Biodegradable polymers. Adv Polym Sci 107:1–40CrossRefGoogle Scholar
  85. Lenz RW, Marchessault RH (2005) Bacterial polyesters: biosynthesis, biodegradable plastics and biotechnology. Biomacromolecules 6:1–8CrossRefGoogle Scholar
  86. Li J, Li X, Ni X, Leong KW (2003) Synthesis and characterization of new biodegradable amphiphilic poly(ethylene oxide)-b-poly[(R)-3-hydroxy butyrate]-b-poly(ethylene oxide) triblock copolymers. Macromolecules 36:2661–2667CrossRefGoogle Scholar
  87. Li J, Ni X, Li X, Tan NK, Lim CT, Ramakrishna S, Leong KW (2005a) Micellization phenomena of biodegradable amphiphilic triblock copolymers consisting of poly(β-hydroxyalkanoic acid) and poly(ethylene oxide). Langmuir 21:8681–8685CrossRefGoogle Scholar
  88. Li X, Loh XJ, Wang K, He C, Li J (2005b) Poly(ester urethane)s consisting of poly[(R)-3-hydroxy butyrate] and poly(ethylene glycol) as candidate biomaterials: characterization and mechanical property study. Biomacromolecules 6:2740–2747CrossRefGoogle Scholar
  89. Lütke-Eversloh T, Bergander K, Luftmann H, Steinbüchel A (2001a) Biosynthesis of a new class of biopolymer: bacterial synthesis of a sulfur containing polymer with thioester linkages. Microbiology 147:11–19Google Scholar
  90. Lütke-Eversloh T, Bergander K, Luftman H, Steinbüchel A (2001b) Biosynthesis of poly(3-hydroxybutyrate-co-3-mercaptobutyrate) as a sulfur analog to poly(3-hydroxybutyrate). Biomacromolecules 2:1061–1065CrossRefGoogle Scholar
  91. Lütke-Eversloh T, Fischer A, Remminghorst U, Kawada J, Marchessault RH, Bögershausen A, Kalwei M, Eckert H, Reichelt R, Liu SJ, Steinbüchel A (2002) Biosynthesis of novel thermoplastic polythioesters by engineered Escherichia coli. Nature Mater 1:236–240CrossRefGoogle Scholar
  92. Nguyen S, Marchessault RH (2004) Synthesis and properties of graft copolymers based on poly(3-hydroxybutyrate) macromonomers. Macromol Biosci 4:262–268CrossRefGoogle Scholar
  93. Nuyken O, Weidner R (1986) Graft and block copolymers via polymeric azo initiators. Adv Polym Sci 145:73–74Google Scholar
  94. Park WH, Lenz RW, Goodwin S (1998a) Epoxidation of bacterial polyesters with unsaturated side chains. I. Production and epoxidation of polyesters from 10-undecenoic acid. Macromolecules 31:1480–1486CrossRefGoogle Scholar
  95. Pederson EN, McChalicher CWJ, Srienc F (2006) Bacterial synthesis of PHA block copolymers. Biomacromolecules 7:1904–1911CrossRefGoogle Scholar
  96. Park WH, Lenz RW, Goodwin S (1998b) Epoxidation of bacterial polyesters with unsaturated side chains. III. Crosslinking of epoxidized polymers. J Polym Sci A Polym Chem 36:2389–2396CrossRefGoogle Scholar
  97. Qiu YZ, Ouyang SP, Shen Z, Wu Q, Chen GQ (2004) Metabolic engineering for the production of copolyesters consisting of 3-hydroxybutyrate and 3-hydroxyhexanoate by Aeromonas hydrophila. Macromol Biosci 4:255–261CrossRefGoogle Scholar
  98. Qiu YZ, Han J, Guo JJ, Chen GQ (2005) Production of poly(3-hydroxybutyrate and 3-hydroxyhexanoate) by Aeromonas hydrophila and Pseudomonas putida. Biotechnol Lett 27:1381–1386CrossRefGoogle Scholar
  99. Ramsay BA, Lomaliza K, Chavarie C, Dube B, Bataille B, Ramsay JA (1990) Production of poly-(β-hydroxybutyric-co-β-hydroxyvaleric) acids. Appl Environ Microbiol 56:2093–2098Google Scholar
  100. Ravenelle F, Marchessault R (2003) Self assembly of poly[(R)-3-hydroxybutyric acid)-block-Poly(ethylene glycol) diblock copolymers. Biomacromolecules 4:856–858CrossRefGoogle Scholar
  101. Ritter H, von Spee AG (1994) Bacterial production of polyesters bearing phenoxy groups in the side chains, 1 poly(3-hydroxy-5-phenoxypentanoate-co-3-hydroxy-9-phenoxy-nonanoate) from Pseudomonas oleovorans. Macromol Chem Phys 195:1665–1672CrossRefGoogle Scholar
  102. Saad GR (2001) Calorimetric and dielectric study of the segmented biodegradable poly(ester-urethane)s based on bacterial poly[(R)-3-hydroxy butyrate]. Macromol Biosci 1:387–396CrossRefGoogle Scholar
  103. Schmack G, Gorenflo V, Steinbüchel A (1998) Biotechnological production and characterization of polyesters containing 4-hydroxyvaleric acid and medium-chain-length hydroxyalkanoic acids. Macromolecules 31:644–649CrossRefGoogle Scholar
  104. Shah DT, Tran M, Berger PA, Aggarwal P, Asrar J, Madden LA, Anderson AJ (2000) Synthesis and properties of hydroxy-terminated poly(hydroxyalkanoate)s. Macromolecules 33:2875–2880CrossRefGoogle Scholar
  105. Steinbüchel A (1991) Polyhydroxyalkanoic acids. In: Byrom D (ed) Biomaterials. Macmillan, New York, pp 123–213Google Scholar
  106. Steinbüchel A (2001) Perspectives for biotechnological production and utilization of biopolymers: metabolic engineering of polyhydroxyalkanoate biosynthesis pathways as a successful example. Macromol Biosci 1:1–24CrossRefGoogle Scholar
  107. Steinbüchel A, Füchtenbusch B (1998) Bacterial and other biological systems for polyester production. TIBTECH 16:419–427Google Scholar
  108. Steinbüchel A, Valentin HE (1995) Diversity of bacterial polyhydroxyalkanoic acids. FEMS Microbiol Lett 128:219–228CrossRefGoogle Scholar
  109. Stigers DJ, Tew GN (2003) Poly(3-hydroxyalkanoate)s functionalized with carboxylic acid groups in the side chain. Biomacromolecules 4:193–195CrossRefGoogle Scholar
  110. Sudesh K, Doi Y (2005) Polyhydroxyalkanoates. In: Bastioli C (ed) Handbook of biodegradable polymers. Rapra Technology, UK, pp 219–256Google Scholar
  111. Sudesh K, Abe H, Doi Y (2000) Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Progr Polym Sci 25:1503–1555CrossRefGoogle Scholar
  112. Tanaka T, Fujita M, Takeuchi A, Suzuki Y, Uesugi K, Ito K, Fujisawa T, Doi Y, Iwata T (2006) Formation of highly ordered structure in poly[(R)-3-hydroxybutyrate-co-3-hydroxyvalerate] high-strength fibers. Macromolecules 39:2940–2946CrossRefGoogle Scholar
  113. Timbart L, Renard E, Langlois V, Guerin P (2004) Novel biodegradable copolyesters containing blocks of poly(3-hydroxyoctanoate) and poly(ɛ-caprolactone): synthesis and characterization. Macromol Biosci 4:1014–1020CrossRefGoogle Scholar
  114. Timm A, Steinbüchel A (1990) Formation of polyesters consisting of medium-chain-length 3-hydroxyalkanoic acids from gluconate by Pseudomonas aeruginosa and other fluorescent pseudomonads. Appl Environ Microbiol 56:3360–3367Google Scholar
  115. Tsuge T, Saito Y, Kikkawa Y, Hiraishi T, Doi Y (2004) Biosynthesis and compositional regulation of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) in recombinant Ralstonia eutropha expressing mutated polyhydroxyalkanoate synthase genes. Macromol Biosci 4:238–242CrossRefGoogle Scholar
  116. Ulmer HW, Gross RA, Posada M, Weisbach P, Fuller RC, Lenz RW (1994) Bacterial production of poly(β-hydroxyalkanoates) containing repeating units by Rhodospirillum rubrum. Macromolecules 27:1675–1679CrossRefGoogle Scholar
  117. van der Walle GAM, Buisman GJH, Weusthuis RA, Eggink G (1999) Development of environmentally friendly coatings and paints using medium-chain-length poly(3-hydroxy-alkanoates) as the polymer binder. Int J Biol Macromol 25:123–128CrossRefGoogle Scholar
  118. Valentin HE, Lee EY, Choi CY, Steinbüchel A (1994) Identification of 4-hydroxyhexanoic acid as a new constituent of biosynthetic polyhydroxyalkanoic acids from bacteria. Appl Microbiol Biotechnol 40:710–716CrossRefGoogle Scholar
  119. Valentin HE, Berger PA, Gruys KJ, Rodrigues MFA, Steinbüchel A, Tran M, Asrar J (1999) Biosynthesis and characterization of poly(3-hydroxy-4-pentenoic acid). Macromolecules 32:7389–7395CrossRefGoogle Scholar
  120. Yalpani M, Marchessault RH, Morin FG, Monasterios CJ (1991) Synthesis of poly(3-hydroxyalkanoate) (PHA) conjugates: PHA-carbohydrate and PHA-synthetic polymer conjugates. Macromolecules 24:6046–6049CrossRefGoogle Scholar
  121. Walz R, Bömer B, Heitz W (1977) Preparation and characterization of a branched bacterial polyester. Makromol Chem 178:2527–2534CrossRefGoogle Scholar
  122. Zagar E, Krzan A, Adamus G, Kowalczuk M (2006) Sequence distribution in microbial poly(3-hydroxybutyrate and 3-hydroxyvalerate) co-polyesters determined by NMR and MS. Biomacromolecules 7:2210–2216CrossRefGoogle Scholar
  123. Zhang S, Kolvek S, Goodwin S, Lenz RW (2004) Poly(hydroxyalkanoic acid) biosynthesis in Ectothiorhodospira shaposhnikovii: characterization and reactivity of a type III PHA synthase. Biomacromolecules 5:40–48CrossRefGoogle Scholar
  124. Zhu KJ, Bihai S, Shilin Y (1989) Super microcapsules (SMC). I. Preparation and characterization of star polymethylene oxide (PEO)-polylactide (PLA) copolymers. J Polym Sci A Polym Chem 27:2151–2159CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Department of ChemistryZonguldak Karaelmas UniversityZonguldakTurkey
  2. 2.Institut für Molekulare Mikrobiologie und BiotechnologieWestfälische Wilhelms–Universität MünsterMünsterGermany

Personalised recommendations