Applied Microbiology and Biotechnology

, Volume 74, Issue 4, pp 851–856 | Cite as

Effect of surfactants on fluoranthene degradation by Pseudomonas alcaligenes PA-10

  • Anne Marie Hickey
  • Linda Gordon
  • Alan D. W. Dobson
  • Catherine T. Kelly
  • Evelyn M. Doyle
Applied Microbial and Cell Physiology


Two surfactants, Tween 80 and JBR, were investigated for their effect on fluoranthene degradation by a Pseudomonad. Both surfactants enhanced fluoranthene degradation by Pseudomonas alcaligenes PA-10 in shake flask culture. This bacterium was capable of utilising the synthetic surfactant and the biosurfactant as growth substrates and the critical micelle concentration of neither compound inhibited bacterial growth. The biosurfactant JBR significantly increased polycyclic aromatic hydrocarbon (PAH) desorption from soil. Inoculation of fluoranthene-contaminated soil microcosms with P. alcaligenes PA-10 resulted in the removal of significant amounts (45 ± 5%) of the PAH after 28 days compared to an uninoculated control. Addition of the biosurfactant increased the initial rate of fluoranthene degradation in the inoculated microcosm. The presence of a lower molecular weight PAH, phenanthrene, had a similar effect on the rate of fluoranthene removal.


PAHs Fluoranthene Biodegradation Surfactants 


  1. Aronstein BN, Calvillo YM, Alexander M (1991) Effect of surfactants at low concentrations on the desorption and biodegradation of sorbed aromatic compounds in soil. Environ Sci Technol 25:1728–1731CrossRefGoogle Scholar
  2. Banat IM, Makkar RS, Cameotra SS (2000) Potential commercial applications of microbial surfactants. Appl Microbiol Biotechnol 53:495–508CrossRefGoogle Scholar
  3. Bramwell DA, Laha S (2000) Effects of surfactant addition on the biomineralization and microbial toxicity of phenanthrene. Biodegradation 11:263–277CrossRefGoogle Scholar
  4. Briglia M, Nurmiaho-Lassila E-L, Vallini G, Salkinoja-Salonen M (1990) The survival of the pentachlorophenol-degrading Rhodococcus chlorophenolicus PCP-1 and Flavobacterium sp. in natural soil. Biodegradation 1:273–281CrossRefGoogle Scholar
  5. Cerniglia CE (1997) Fungal metabolism of polycyclic aromatic hydrocarbons: past, present and future applications in bioremediation. J Ind Microbiol Biotechnol 19:324–333CrossRefGoogle Scholar
  6. Chen SH, Aitken MD (2001) Salicylate stimulates the degradation of high molecular weight polycyclic aromatic hydrocarbons by Pseudomonas saccharophila P15. Environ Sci Technol 33:435–439CrossRefGoogle Scholar
  7. Deschênes L, Lafrance P, Villeneuve JP, Samson R (1996) Adding sodium dodecyl sulfate and Pseudomonas aeruginosa UG2 biosurfactants inhibits polycyclic aromatic hydrocarbon biodegradation in a weathered creosote-contaminated soil. Appl Microbiol Biotechnol 46:638–646CrossRefGoogle Scholar
  8. Doong RA, Lei WG (2003) Solubilization and mineralization of polycyclic aromatic hydrocarbons by Pseudomonas putida in the presence of surfactant. J Hazard Mater B96:15–27CrossRefGoogle Scholar
  9. Gordon L, Dobson ADW (2001) Fluoranthene degradation in Pseudomonas alcaligenes PA-10. Biodegradation 12:393–400CrossRefGoogle Scholar
  10. Grant RJ (2001) A bioassay for the measurement of insecticide concentration. Arch Environ Contam Toxicol 41:319–324CrossRefGoogle Scholar
  11. Herman DC, Zhang Y, Miller RM (1997) Rhamnolipid (biosurfactant) effects on cell aggregation and biodegradation of residual hexadecane under saturated flow conditions. Appl Environ Microbiol 63:3622–3627Google Scholar
  12. Juhasz AL, Naidu R (2000) Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: a review of the microbial degradation of benzo[a]pyrene. Int Biodeterior Biodegrad 45:57–88CrossRefGoogle Scholar
  13. Kanaly RA, Harayama S (2000) Biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons by bacteria. J Bacteriol 182:2059–2067CrossRefGoogle Scholar
  14. Keith LH, Telliard WA (1979) Priority pollutants. I—A perspective view. Environ Sci Technol 13:416–423CrossRefGoogle Scholar
  15. Lageveen RG, Huisman HP, Ketelaar P, Eggink G, Witholt B (1988) Formation of polyesters by Pseudomonas oleovorans: effect of substrates on formation and composition of poly-(R)-3-hydroxyalkenoates. Appl Environ Microbiol 54:2924–2932Google Scholar
  16. Laha S, Luthy RG (1991) Inhibition of phenanthrene mineralization by non-ionic surfactants in soil–water systems. Environ Sci Technol 25:1920–1930CrossRefGoogle Scholar
  17. Laha S, Luthy RG (1992) Effects of non-ionic surfactants on the solubilization and mineralization of phenanthrene in soil–water systems. Biotechnol Bioeng 40:1367–1380CrossRefGoogle Scholar
  18. McGrath R, Singleton I (2000) Pentachlorophenol transformation in soil: a toxicological assessment. Soil Biol Biochem 32:1311–1314CrossRefGoogle Scholar
  19. Meador JP, Stein JE, Reichert WL, Aranasi U (1995) Bioaccumulation of polycyclic aromatic hydrocarbons by marine organisms. Rev Environ Contam Toxicol 143:79–165Google Scholar
  20. Mueller JG, Cerniglia CE, Pritchard PH (1996) Bioremediation of environments contaminated by polycyclic aromatic hydrocarbons. In: Crawford RL, Crawford DL (eds) Bioremediation: principles and applications. Cambridge University Press, Cambridge, UK, pp 125–194Google Scholar
  21. Rosenberg M, Gutnick D, Rosenberg E (1980) Adherence of bacteria to hydrocarbons: a simple method for measuring cell-surface hydrophobicity. FEMS Microbiol Lett 9:29–33CrossRefGoogle Scholar
  22. Smith MR (1990) The biodegradation of aromatic hydrocarbons by bacteria. Biodegradation 1:191–206CrossRefGoogle Scholar
  23. Smith MJ, Lethbridge G, Burns RG (1997) Bioavailability and biodegradation of polycyclic aromatic hydrocarbons in soils. FEMS Microbiol Lett 152:141–147CrossRefGoogle Scholar
  24. Sobisch T, Heá H, Niebelschutz H, Schmidt U (2000) Effect of additives on biodegradation of PAH in soils. Colloid Surf A 162:1–14CrossRefGoogle Scholar
  25. Stelmack PL, Gray MR, Pickard MA (1999) Bacterial adhesion to soil contaminants in the presence of surfactants. Appl Environ Microbiol 65:163–168Google Scholar
  26. Tiehm A (1994) Degradation of polycyclic aromatic hydrocarbons in the presence of synthetic surfactants. Appl Environ Microbiol 60:258–263Google Scholar
  27. Tiehm A, Stieber M, Werner P, Frimmel FH (1997) Surfactant-enhanced mobilization and biodegradation of polycyclic aromatic hydrocarbons in manufactured gas plant soil. Environ Sci Technol 31:2570–2576CrossRefGoogle Scholar
  28. US EPA (1994) Method 3541. Automated Soxhlet extraction. Revision 0Google Scholar
  29. Van Dyke MI, Couture P, Brauer M, Lee H, Trevors JT (1993) Pseudomonas aeruginosa UG2 rhamnolipid biosurfactants: structural characterization and their use in removing hydrophobic compounds from soil. Can J Microbiol 39:1071–1078CrossRefGoogle Scholar
  30. Willumsen PA, Karlson U, Pritchard PH (1998) Response of fluoranthene-degrading bacteria to surfactants. Appl Microbiol Biotechnol 50:475–483CrossRefGoogle Scholar
  31. Wilson SC, Jones KC (1993) Bioremediation of soil contaminated with polynuclear aromatic hydrocarbons (PAHs): a review. Environ Pollut 81:229–249CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Anne Marie Hickey
    • 1
  • Linda Gordon
    • 2
  • Alan D. W. Dobson
    • 2
  • Catherine T. Kelly
    • 1
  • Evelyn M. Doyle
    • 1
  1. 1.School of Biology and Environmental ScienceUniversity College DublinDublin 4Republic of Ireland
  2. 2.Department of MicrobiologyNational University of Ireland, University College CorkCorkRepublic of Ireland

Personalised recommendations