Applied Microbiology and Biotechnology

, Volume 73, Issue 6, pp 1251–1258 | Cite as

Applications of whole-cell bacterial sensors in biotechnology and environmental science

  • Kiyohito YagiEmail author


Biosensors have major advantages over chemical or physical analyses with regard to specificity, sensitivity, and portability. Recently, many types of whole-cell bacterial biosensors have been developed using recombinant DNA technology. The bacteria are genetically engineered to respond to the presence of chemicals or physiological stresses by synthesizing a reporter protein, such as luciferase, β-galactosidase, or green fluorescent protein. In addition to an overview of conventional biosensors, this minireview discusses a novel type of biosensor using a photosynthetic bacterium as the sensor strain and the crtA gene, which is responsible for carotenoid synthesis, as the reporter. Since bacteria possess a wide variety of stress-response mechanisms, including antioxidation, heat-shock responses, nutrient-starvation, and membrane-damage responses, DNA response elements for several stress-response proteins can be fused with various reporter genes to construct a versatile set of bacterial biosensors for a variety of analytes. Portable biosensors for on-site monitoring have been developed using a freeze-dried biosensing strain, and cell array biosensors have been designed for high-throughput analysis. Moreover, in the future, the use of single-cell biosensors will permit detailed analyses of samples. Signals from such sensors could be detected with digital imaging, epifluorescence microscopy, and/or flow cytometry.


Whole-cell biosensor Reporter gene Luciferase β-galactosidase Green fluorescent protein crtA 


  1. Belkin S, Smulski DR, Vollmer AC, Van Dyk TK, LaRossa RA (1996) Oxidative stress detection with Escherichia coli harboring a katG′:lux fusion. Appl Environ Microbiol 62:2252–2256Google Scholar
  2. Billard P, DuBow MS (1998) Bioluminescence-based assays for detection and characterization of bacteria and chemicals in clinical laboratories. Clin Biochem 31:1–14CrossRefGoogle Scholar
  3. Biran I, Klimentiy L, Hengge Aronis R, Ron EZ, Rishpon J (1999) On-line monitoring of gene expression. Microbiology 145:2129–2133CrossRefGoogle Scholar
  4. Biran I, Babai R, Levcov K, Rishpon J, Ron EZ (2000) Online and in situ monitoring of environmental pollutants: electrochemical biosensing of cadmium. Environ Microbiol 2:285–290CrossRefGoogle Scholar
  5. Cai J, DuBow MS (1997) Use of a luminescent bacterial biosensor for biomonitoring and characterization of arsenic toxicity of chromated copper arsenate (CCA). Biodegradation 8:105–111CrossRefGoogle Scholar
  6. Cheng Vollmer A, Van Dyk TK (2004) Stress responsive bacteria: biosensors as environmental monitors. Adv Microb Physiol 49:131–174Google Scholar
  7. Choi SH, Gu MB (2002) A portable toxicity biosensor using freeze-dried recombinant bioluminescent bacteria. Biosens Bioelectron 17:433–440CrossRefGoogle Scholar
  8. Condee CW, Summers AO (1992) A mer-lux transcriptional fusion for real-time examination of in vivo gene expression kinetics and promoter response to altered superhelicity. J Bacteriol 174:8094–8101Google Scholar
  9. Corbisier P, Ji G, Nuyts G, Mergeay M, Silver S (1993) luxAB gene fusions with the arsenic and cadmium resistance operons of Staphylococcus aureus plasmid pI258. FEMS Microbiol Lett 110:231–238CrossRefGoogle Scholar
  10. Crameri A, Whitehorn EA, Tate E, Stemmer WP (1996) Improved green fluorescent protein by molecular evolution using DNA shuffling. Nat Biotechnol 14:315–319CrossRefGoogle Scholar
  11. D’Souza SF (2001) Microbial biosensors. Biosens Bioelectron 16:337–353CrossRefGoogle Scholar
  12. Fujimoto H, Wakabayashi M, Yamashiro H, Maeda I, Isoda K, Kondoh M, Kawase M, Miyasaka H, Yagi K (2006) Whole-cell arsenite biosensor using photosynthetic bacterium Rhodovulum sulfidophilum: Rhodovulum sulfidophilum as an arsenite biosensor. Appl Microbiol Biotechnol (in press)Google Scholar
  13. Gu MB, Chang ST (2001) Soil biosensor for the detection of PAH toxicity using an immobilized recombinant bacterium and a biosurfactant. Biosens Bioelectron 16:667–674CrossRefGoogle Scholar
  14. Gu MB, Choi SH, Kim SW (2001) Some observations in freeze-drying of recombinant bioluminescent Escherichia coli for toxicity monitoring. J Biotechnol 88:95–105CrossRefGoogle Scholar
  15. Guan X, Ramanathan S, Garris JP, Shetty RS, Ensor M, Bachas LG, Daunert S (2000) Chlorocatechol detection based on a clc operon/reporter gene system. Anal Chem 72:2423–2427CrossRefGoogle Scholar
  16. Hansen LH, Sorensen SJ (2000) Versatile biosensor vectors for detection and quantification of mercury. FEMS Microbiol Lett 193:123–127CrossRefGoogle Scholar
  17. Hay AG, Rice JF, Applegate BM, Bright NG, Sayler GS (2000) A bioluminescent whole-cell reporter for detection of 2,4-dichlorophenoxyacetic acid and 2,4-dichlorophenol in soil. Appl Environ Microbiol 66:4589–4594CrossRefGoogle Scholar
  18. Heim R, Tsien RY (1996) Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer. Curr Biol 6:178–182CrossRefGoogle Scholar
  19. Heitzer A, Malachowsky K, Thonnard JE, Bienkowski PR, White DC, Sayler GS (1994) Optical biosensor for environmental on-line monitoring of naphthalene and salicylate bioavailability with an immobilized bioluminescent catabolic reporter bacterium. Appl Environ Microbiol 60:1487–1494Google Scholar
  20. Jain VK, Magrath IT (1991) A chemiluminescent assay for quantitation of beta-galactosidase in the femtogram range: application to quantitation of beta-galactosidase in lacZ-transfected cells. Anal Biochem 199:119–124CrossRefGoogle Scholar
  21. Kaur P, Rosen BP (1992) Plasmid-encoded resistance to arsenic and antimony. Plasmid 27:29–40CrossRefGoogle Scholar
  22. Kim SO, Merchant K, Nudelman R, Beyer WF Jr, Keng T, DeAngelo J, Hausladen A, Stamler JS (2002) OxyR: a molecular code for redox-related signaling. Cell 109:383–396CrossRefGoogle Scholar
  23. King JMH, DiGrazia PM, Applegate B, Burlage R, Sanseverino J, Dunbar P, Larimer F, Sayler GS (1990) Rapid, sensitive bioluminescent reporter technology for naphthalene exposure and biodegradation. Science 249:778–781CrossRefGoogle Scholar
  24. Kobatake E, Niimi T, Haruyama T, Ikariyama Y, Aizawa M (1995) Biosensing of benzene derivatives in the environment by luminescent Escherichia coli. Biosens Bioelectron 10:601–605CrossRefGoogle Scholar
  25. Lee HJ, Gu MB (2003) Construction of a sodA:luxCDABE fusion Escherichia coli: comparison with a katG fusion strain through their responses to oxidative stresses. Appl Microbiol Biotechnol 60:577–580Google Scholar
  26. Lee JH, Mitchell RJ, Kim BC, Cullen DC, Gu MB (2005) A cell array biosensor for environmental toxicity analysis. Biosens Bioelectron 21:500–507CrossRefGoogle Scholar
  27. Maeda I, Yamashiro H, Yoshioka D, Onodera M, Ueda S, Miyasaka H, Umeda F, Kawase M, Takaichi S, Yagi K (2005) Unusual accumulation of demethylspheroidene in anaerobic–phototrophic growth of crtA-deleted mutants of Rhodovulum sulfidophilum. Curr Microbiol 51:193–197CrossRefGoogle Scholar
  28. Maeda I, Yamashiro H, Yoshioka D, Onodera M, Ueda S, Kawase M, Miyasaka H, Yagi K (2006) Colorimetric dimethyl sulfide sensor using Rhodovulum sulfidophilum cells based on intrinsic pigment conversion by CrtA. Appl Microbiol Biotechnol 70:397–402CrossRefGoogle Scholar
  29. Matrubutham U, Sayler GS (1998) Microbial biosensors based on optical detection. In: Mulchandani A, Rogers KR (eds) Enzyme and microbial biosensors: techniques and protocols. Humana, Clifton, pp 249–256CrossRefGoogle Scholar
  30. Misteli T, Spector DL (1997) Applications of the green fluorescent protein in cell biology and biotechnology. Nat Biotechnol 15:961–964CrossRefGoogle Scholar
  31. Naylor LH (1999) Reporter gene technology: the future looks bright. Biochem Pharmacol 58:749–757CrossRefGoogle Scholar
  32. Nomura Y, Karube I (1996) In: Williaert R, Baron G, De Backer L (eds) Biosensors using immobilized living cells in immobilized living cell system. Wiley, Chichester, pp 345–359Google Scholar
  33. Nunoshiba T, Nishioka H (1991) ‘Rec-lac test’ for detecting SOS-inducing activity of environmental genotoxic substance. Mutat Res 254:71–77Google Scholar
  34. Olivo PD, Collins PL, Peeples ME, Schlesinger S (1998) Detection and quantitation of human respiratory syncytial virus (RSV) using minigenome cDNA and a Sindbis virus replicon: a prototype assay for negative-strand RNA viruses. Virology 251:198–205CrossRefGoogle Scholar
  35. Park SM, Park HH, Lim WK, Shin HJ (2003) A new variant activator involved in the degradation of phenolic compounds from a strain of Pseudomonas putida. J Biotechnol 103:227–236CrossRefGoogle Scholar
  36. Peitzsch N, Eberz G, Nies DH (1998) Alcaligenes eutrophus as a bacterial chromate sensor. Appl Environ Microbiol 64:453–458Google Scholar
  37. Prasher DC, Eckenrode VK, Ward WW, Prendergast FG, Cormier MJ (1992) Primary structure of the Aequorea victoria green-fluorescent protein. Gene 111:229–233CrossRefGoogle Scholar
  38. Ramanathan S, Shi W, Rosen BP, Daunert S (1997) Sensing antimonite and arsenite at the subattomole level with genetically engineered bioluminescent bacteria. Anal Chem 69:3380–3384CrossRefGoogle Scholar
  39. Riedel K (1998) Microbial biosensors based on oxygen electrodes. In: Mulchandani A, Rogers KR (eds) Enzyme and microbial biosensors: techniques and protocols. Humana, Clifton, pp 199–223CrossRefGoogle Scholar
  40. Scott DL, Ramanathan S, Shi W, Rosen BP, Daunert S (1997) Genetically engineered bacteria: electrochemical sensing systems for antimonite and arsenite. Anal Chem 69:16–20CrossRefGoogle Scholar
  41. Selifonova O, Burlage R, Barkay T (1993) Bioluminescent sensors for detection of bioavailable Hg(II) in the environment. Appl Environ Microbiol 59:3083–3090Google Scholar
  42. Shetty RS, Ramanathan S, Badr IH, Wolford JL, Daunert S (1999) Green fluorescent protein in the design of a living biosensing system for L-arabinose. Anal Chem 71:763–768CrossRefGoogle Scholar
  43. Shi W, Dong J, Scott RA, Ksenzenko MY, Rosen BP (1996) The role of arsenic-thiol interactions in metalloregulation of the ars operon. J Biol Chem 271:9291–9297CrossRefGoogle Scholar
  44. Shin HJ, Park HH, Lim WK (2005) Freeze-dried recombinant bacteria for on-site detection of phenolic compounds by color change. J Biotechnol 119:36–43CrossRefGoogle Scholar
  45. Siemering KR, Golbik R, Sever R, Haseloff J (1996) Mutations that suppress the thermosensitivity of green fluorescent protein. Curr Biol 6:1653–1663CrossRefGoogle Scholar
  46. Sticher P, Jaspers MC, Stemmler K, Harms H, Zehnder AJ, van der Meer JR (1997) Development and characterization of a whole-cell bioluminescent sensor for bioavailable middle-chain alkanes in contaminated groundwater samples. Appl Environ Microbiol 63:4053–4060Google Scholar
  47. Stiner L, Halverson LJ (2002) Development and characterization of a green fluorescent protein-based bacterial biosensor for bioavailable toluene and related compounds. Appl Environ Microbiol 68:1962–1971CrossRefGoogle Scholar
  48. Stocker J, Balluch D, Gsell M, Harms H, Feliciano J, Daunert S, Malik KA, van der Meer JR (2003) Development of a set of simple bacterial biosensors for quantitative and rapid measurements of arsenite and arsenate in potable water. Environ Sci Technol 37:4743–4750CrossRefGoogle Scholar
  49. Takaichi S (2001) Carotenoids and carotenogenesis in anoxygenic photosynthetic bacteria. Kluwer, NorwellGoogle Scholar
  50. Takaichi S, Jung D, Madigan M (2001) Accumulation of unusual carotenoids in the spheroidene pathway, demethylspheroidene and demethylspheroidenone, in an alkaliphilic purple nonsulfur bacterium Rhodobacter bogoriensis. Photosynth Res 67:207–214CrossRefGoogle Scholar
  51. Tani H, Maehana K, Kamidate T (2004) Chip-based bioassay using bacterial sensor strains immobilized in three-dimensional microfluidic network. Anal Chem 76:6693–6697CrossRefGoogle Scholar
  52. Tauriainen S, Karp M, Chang W, Virta M (1997) Recombinant luminescent bacteria for measuring bioavailable arsenite and antimonite. Appl Environ Microbiol 63:4456–4461Google Scholar
  53. Tauriainen S, Karp M, Chang W, Virta M (1998) Luminescent bacterial sensor for cadmium and lead. Biosens Bioelectron 13:931–938CrossRefGoogle Scholar
  54. Tauriainen S, Virta M, Chang W, Karp M (1999) Measurement of firefly luciferase reporter gene activity from cells and lysates using Escherichia coli arsenite and mercury sensors. Anal Biochem 272:191–198CrossRefGoogle Scholar
  55. Tecon R, van der Meer JR (2006) Information from single-cell bacterial biosensors: what is it good for? Curr Opin Biotechnol 17:4–10CrossRefGoogle Scholar
  56. Tibazarwa C, Corbisier P, Mench M, Bossus A, Solda P, Mergeay M, Wyns L, van der Lelie D (2001) A microbial biosensor to predict bioavailable nickel in soil and its transfer to plants. Environ Pollut 113:19–26CrossRefGoogle Scholar
  57. van der Meer JR, Tropel D, Jaspers M (2004) Illuminating the detection chain of bacterial bioreporters. Environ Microbiol 6:1005–1020CrossRefGoogle Scholar
  58. Van Dyk TK, Majarian WR, Konstantinov KB, Young RM, Dhurjati PS, LaRossa RA (1994) Rapid and sensitive pollutant detection by induction of heat shock gene-bioluminescence gene fusions. Appl Environ Microbiol 60:1414–1420Google Scholar
  59. Vollmer AC, Belkin S, Smulski DR, Van Dyk TK, LaRossa RA (1997) Detection of DNA damage by use of Escherichia coli carrying recA′:lux, uvrA′:lux, or alkA′:lux reporter plasmids. Appl Environ Microbiol 63:2566–2571Google Scholar
  60. Welsh S, Kay SA (1997) Reporter gene expression for monitoring gene transfer. Curr Opin Biotechnol 8:617–622CrossRefGoogle Scholar
  61. Werlen C, Jaspers MC, van der Meer JR (2004) Measurement of biologically available naphthalene in gas and aqueous phases by use of a Pseudomonas putida biosensor. Appl Environ Microbiol 70:43–51CrossRefGoogle Scholar
  62. Wilson T, Hastings JW (1998) Bioluminescence. Annu Rev Cell Dev Biol 14:197–230CrossRefGoogle Scholar
  63. Wu J, Rosen BP (1991) The ArsR protein is a trans-acting regulatory protein. Mol Microbiol 5:1331–1336CrossRefGoogle Scholar
  64. Wu J, Weiss B (1992) Two-stage induction of the soxRS (superoxide response) regulon of Escherichia coli. J Bacteriol 174:3915–3920Google Scholar
  65. Yeliseev AA, Eraso JM, Kaplan S (1996) Differential carotenoid composition of the B875 and B800-850 photosynthetic antenna complexes in Rhodobacter sphaeroides 2.4.1: involvement of spheroidene and spheroidenone in adaptation to changes in light intensity and oxygen availability. J Bacteriol 178:5877–5883Google Scholar
  66. Yura T, Nakahigashi K (1999) Regulation of the heat-shock response. Curr Opin Microbiol 2:153–158CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Graduate School of Pharmaceutical SciencesOsaka UniversitySuitaJapan

Personalised recommendations