Advertisement

Applied Microbiology and Biotechnology

, Volume 74, Issue 2, pp 406–421 | Cite as

Global gene expression analysis of glucose overflow metabolism in Escherichia coli and reduction of aerobic acetate formation

  • Andrea Veit
  • Tino Polen
  • Volker F. WendischEmail author
Genomics and Proteomics

Abstract

During aerobic growth on glucose, Escherichia coli produces acetate in the so-called overflow metabolism. DNA microarray analysis was used to determine the global gene expression patterns of chemostat cultivations of E. coli MG1655 that were characterized by different acetate formation rates during aerobic growth on glucose. A correlation analysis identified that expression of ten genes (sdhCDAB, sucB, sucC, acnB, lpdA, fumC and mdh) encoding the TCA cycle enzymes succinate dehydrogenase, α-ketoglutarate dehydrogenase, succinyl-CoA synthetase, aconitase, fumarase and malate dehydrogenase, respectively, and of the acsyjcHactP operon for acetate utilization correlated negatively with acetate formation. Relieving transcriptional control of the sdhCDABb0725sucABCD operon by chromosomal promoter exchange mutagenesis yielded a strain with increased specific activities of the TCA cycle enzymes succinate dehydrogenase, α-ketoglutarate dehydrogenase and succinyl-CoA synthetase, which are encoded by this operon. The resulting strain produced less acetate and directed more carbon towards carbon dioxide formation than the parent strain MG1655 while maintaining high growth and glucose consumption rates.

Keywords

Escherichia coli MG1655 Aerobic acetate formation Overflow metabolism TCA cycle DNA microarray Chemostat cultivation Global gene expression analysis Acetate switch 

Notes

Acknowledgements

We thank Hermann Sahm for the continuous support and Doris Rittmann for the technical assistance.

Supplementary material

References

  1. Akesson M, Hagander P, Axelsson JP (2001) Avoiding acetate accumulation in Escherichia coli cultures using feedback control of glucose feeding. Biotechnol Bioeng 73:223–230CrossRefGoogle Scholar
  2. Altaras NE, Cameron DC (1999) Metabolic engineering of a 1,2-propanediol pathway in Escherichia coli. Appl Environ Microbiol 65:1180–1185Google Scholar
  3. Amarasingham CR, Davis BD (1965) Regulation of alpha-ketoglutarate dehydrogenase formation in Escherichia coli. J Biol Chem 240:3664–3668Google Scholar
  4. Arfin SM et al (2000) Global gene expression profiling in Escherichia coli K12. The effects of integration host factor. J Biol Chem 275:29672–29684CrossRefGoogle Scholar
  5. Aristidou AA, San K-Y, Bennett GN (1994) Modification of central metabolic pathway in Escherichia coli to reduce acetate accumulation by heterologous expression of the Bacillus subtilis acetolactate synthase gene. Biotechnol Bioeng 44:944–951CrossRefGoogle Scholar
  6. Axe DD, Bailey JE (1995) Transport of lactate and acetate through the energized cytoplasmic membrane of Escherichia coli. Biotechnol Bioeng 47:8–19CrossRefGoogle Scholar
  7. Beatty CM, Browning DF, Busby SJ, Wolfe AJ (2003) Cyclic AMP receptor protein-dependent activation of the Escherichia coli acsP2 promoter by a synergistic class III mechanism. J Bacteriol 185:5148–5157CrossRefGoogle Scholar
  8. Bermejo LL, Welker NE, Papoutsakis ET (1998) Expression of Clostridium acetobutylicum ATCC 824 genes in Escherichia coli for acetone production and acetate detoxification. Appl Environ Microbiol 64:1079–1085Google Scholar
  9. Bongaerts J, Kramer M, Muller U, Raeven L, Wubbolts M (2001) Metabolic engineering for microbial production of aromatic amino acids and derived compounds. Metab Eng 3:289–300CrossRefGoogle Scholar
  10. Bridger WA, Cohen LH (1969) The kinetics of inactivation of adenylosuccinate lyase: evidence for a substrate-induced conformational change. Can J Biochem 47:665–672CrossRefGoogle Scholar
  11. Brown TD et al (1977) The enzymic interconversion of acetate and acetyl–coenzyme A in Escherichia coli. J Gen Microbiol 102:327–336Google Scholar
  12. Browning DF, Beatty CM, Wolfe AJ, Cole JA, Busby SJ (2002) Independent regulation of the divergent Escherichia coli nrfA and acsP1 promoters by a nucleoprotein assembly at a shared regulatory region. Mol Microbiol 43:687–701CrossRefGoogle Scholar
  13. Browning DF, Beatty CM, Sanstad EA, Gunn KE, Busby SJ, Wolfe AJ (2004) Modulation of CRP-dependent transcription at the Escherichia coli acsP2 promoter by nucleoprotein complexes: anti-activation by the nucleoid proteins FIS and IHF. Mol Microbiol 51:241–254CrossRefGoogle Scholar
  14. Chang YY, Wang AY, Cronan JE Jr (1994) Expression of Escherichia coli pyruvate oxidase (PoxB) depends on the sigma factor encoded by the rpoS(katF) gene. Mol Microbiol 11:1019–1028CrossRefGoogle Scholar
  15. Chang DE, Jung HC, Rhee JS, Pan JG (1999a) Homofermentative production of d- or l-lactate in metabolically engineered Escherichia coli RR1. Appl Environ Microbiol 65:1384–1389Google Scholar
  16. Chang DE, Shin S, Rhee JS, Pan JG (1999b) Acetate metabolism in a pta mutant of Escherichia coli W3110: importance of maintaining acetyl coenzyme A flux for growth and survival. J Bacteriol 181:6656–6663Google Scholar
  17. Cho S, Shin D, Ji GE, Heu S, Ryu S (2005) High-level recombinant protein production by overexpression of Mlc in Escherichia coli. J Biotechnol 119:197–203CrossRefGoogle Scholar
  18. Cohen SN, Chang AC, Boyer HW, Helling RB (1973) Construction of biologically functional bacterial plasmids in vitro. Proc Natl Acad Sci USA 70:3240–3244CrossRefGoogle Scholar
  19. Cunningham L, Guest JR (1998) Transcription and transcript processing in the sdhCDAB–sucABCD operon of Escherichia coli. Microbiology 144(Pt 8):2113–2123CrossRefGoogle Scholar
  20. Daniel J, Danchin A (1986) 2-Ketoglutarate as a possible regulatory metabolite involved in cyclic AMP-dependent catabolite repression in Escherichia coli K12. Biochimie 68:303–310CrossRefGoogle Scholar
  21. Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97:6640–6645CrossRefGoogle Scholar
  22. Debabov VG (2003) The threonine story. Adv Biochem Eng Biotechnol 79:113–136Google Scholar
  23. Diaz-Ricci JC, Regan L, Bailey JE (1991) Effect of alteration of the acetic acid synthesis pathway on the fermentation pattern of Escherichia coli. Biotechnol Bioeng 38:1318–1324CrossRefGoogle Scholar
  24. El-Mansi M (2004) Flux to acetate and lactate excretions in industrial fermentations: physiological and biochemical implications. J Ind Microbiol Biotechnol 31:295–300CrossRefGoogle Scholar
  25. El-Mansi EM, Holms WH (1989) Control of carbon flux to acetate excretion during growth of Escherichia coli in batch and continuous cultures. J Gen Microbiol 135:2875–2883Google Scholar
  26. Engels S, Schweitzer JE, Ludwig C, Bott M, Schaffer S (2004) clpC and clpP1P2 gene expression in Corynebacterium glutamicum is controlled by a regulatory network involving the transcriptional regulators ClgR and HspR as well as the ECF sigma factor sigmaH. Mol Microbiol 52:285–302CrossRefGoogle Scholar
  27. Farmer WR, Liao JC (1997) Reduction of aerobic acetate production by Escherichia coli. Appl Environ Microbiol 63:3205–3210Google Scholar
  28. Fischer E, Sauer U (2003) Metabolic flux profiling of Escherichia coli mutants in central carbon metabolism using GC-MS. Eur J Biochem 270:880–891CrossRefGoogle Scholar
  29. Flores S, Gosset G, Flores N, de Graaf AA, Bolivar F (2002) Analysis of carbon metabolism in Escherichia coli strains with an inactive phosphotransferase system by (13)C labeling and NMR spectroscopy. Metab Eng 4:124–137CrossRefGoogle Scholar
  30. Foster JW (2004) Escherichia coli acid resistance: tales of an amateur acidophile. Nat Rev Microbiol 2:898–907CrossRefGoogle Scholar
  31. Gimenez R, Nunez MF, Badia J, Aguilar J, Baldoma L (2003) The gene yjcG, cotranscribed with the gene acs, encodes an acetate permease in Escherichia coli. J Bacteriol 185:6448–6455CrossRefGoogle Scholar
  32. Gosset G, Zhang Z, Nayyar S, Cuevas WA, Saier MH Jr (2004) Transcriptome analysis of Crp-dependent catabolite control of gene expression in Escherichia coli. J Bacteriol 186:3516–3524CrossRefGoogle Scholar
  33. Guest JR, Creaghan IT (1973) Gene–protein relationships of the alpha-keto acid dehydrogenase complexes of Escherichia coli K12: isolation and characterization of lipoamide dehydrogenase mutants. J Gen Microbiol 75:197–210Google Scholar
  34. Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580CrossRefGoogle Scholar
  35. Hansen HG, Henning U (1966) Regulation of pyruvate dehydrogenase activity in Escherichia coli K12. Biochim Biophys Acta 122:355–358Google Scholar
  36. Holms H (1996) Flux analysis and control of the central metabolic pathways in Escherichia coli. FEMS Microbiol Rev 19:85–116CrossRefGoogle Scholar
  37. Hommais F et al (2001) Large-scale monitoring of pleiotropic regulation of gene expression by the prokaryotic nucleoid-associated protein, H-NS. Mol Microbiol 40:20–36CrossRefGoogle Scholar
  38. Hosono K, Kakuda H, Ichihara S (1995) Decreasing accumulation of acetate in a rich medium by Escherichia coli on introduction of genes on a multicopy plasmid. Biosci Biotechnol Biochem 59:256–261CrossRefGoogle Scholar
  39. Jensen EB, Carlsen S (1990) Production of recombinant human growth hormone in Escherichia coli: expression of different precursors and physiological effects of glucose, aetate, and salts. Biotechnol Bioeng 36:1–11CrossRefGoogle Scholar
  40. Kayser A, Weber J, Hecht V, Rinas U (2005) Metabolic flux analysis of Escherichia coli in glucose-limited continuous culture. I. Growth-rate-dependent metabolic efficiency at steady state. Microbiology 151:693–706CrossRefGoogle Scholar
  41. Khodursky AB, Peter BJ, Cozzarelli NR, Botstein D, Brown PO, Yanofsky C (2000) DNA microarray analysis of gene expression in response to physiological and genetic changes that affect tryptophan metabolism in Escherichia coli. Proc Natl Acad Sci USA 97:12170–12175CrossRefGoogle Scholar
  42. Khodursky AB, Bernstein JA, Peter BJ, Rhodius V, Wendisch VF, Zimmer DP (2003) Escherichia coli spotted double-strand DNA microarrays: RNA extraction, labeling, hybridization, quality control, and data management. Methods Mol Biol 224:61–78Google Scholar
  43. Kirkpatrick C, Maurer LM, Oyelakin NE, Yoncheva YN, Maurer R, Slonczewski JL (2001) Acetate and formate stress: opposite responses in the proteome of Escherichia coli. J Bacteriol 183:6466–6477CrossRefGoogle Scholar
  44. Kramer M et al (2003) Metabolic engineering for microbial production of shikimic acid. Metab Eng 5:277–283CrossRefGoogle Scholar
  45. Kumari S, Tishel R, Eisenbach M, Wolfe AJ (1995) Cloning, characterization, and functional expression of acs, the gene which encodes acetyl coenzyme A synthetase in Escherichia coli. J Bacteriol 177:2878–2886Google Scholar
  46. Lasko DR, Zamboni N, Sauer U (2000) Bacterial response to acetate challenge: a comparison of tolerance among species. Appl Microbiol Biotechnol 54:243–247CrossRefGoogle Scholar
  47. Lehnen D, Blumer C, Polen T, Wackwitz B, Wendisch VF, Unden G (2002) LrhA as a new transcriptional key regulator of flagella, motility and chemotaxis genes in Escherichia coli. Mol Microbiol 45:521–532CrossRefGoogle Scholar
  48. Liu M, Durfee T, Cabrera JE, Zhao K, Jin DJ, Blattner FR (2005) Global transcriptional programs reveal a carbon source foraging strategy by Escherichia coli. J Biol Chem 280:15921–15927CrossRefGoogle Scholar
  49. Loomis WF Jr, Magasanik B (1966) Nature of the effector of catabolite repression of beta-galactosidase in Escherichia coli. J Bacteriol 92:170–177Google Scholar
  50. Luli GW, Strohl WR (1990) Comparison of growth, acetate production, and acetate inhibition of Escherichia coli strains in batch and fed-batch fermentations. Appl Environ Microbiol 56:1004–1011Google Scholar
  51. Majewski RA, Domach MM (1990) Simple constrained-optimization view of acetate overflow in Escherichia coli. Biotechnol Bioeng 35:732–738CrossRefGoogle Scholar
  52. Mansson R, Tsapogas P, Akerlund M, Lagergren A, Gisler R, Sigvardsson M (2004) Pearson correlation analysis of microarray data allows for the identification of genetic targets for early B-cell factor. J Biol Chem 279:17905–17913CrossRefGoogle Scholar
  53. Mat-Jan F, Williams CR, Clark DP (1989) Anaerobic growth defects resulting from gene fusions affecting succinyl-CoA synthetase in Escherichia coli K12. Mol Gen Genet 215:276–280CrossRefGoogle Scholar
  54. Maurer R, Meyer B, Ptashne M (1980) Gene regulation at the right operator (OR) bacteriophage lambda. I. OR3 and autogenous negative control by repressor. J Mol Biol 139:147–161CrossRefGoogle Scholar
  55. Maurer LM, Yohannes E, Bondurant SS, Radmacher M, Slonczewski JL (2005) pH regulates genes for flagellar motility, catabolism, and oxidative stress in Escherichia coli K-12. J Bacteriol 187:304–319CrossRefGoogle Scholar
  56. Nakamura CE et al (2000) U.S. Patent 6,013,494Google Scholar
  57. Neidhardt FC, Umbarger HE (1996) Chemical composition of Escherichia coli. In: Neidhardt FC (ed) Escherichia coli and Salmonella typhimurium: cellular and molecular biology. ASM Press, Washington DCGoogle Scholar
  58. Nellis DF et al (2005) Preclinical manufacture of an anti-HER2 scFv–PEG–DSPE, liposome-inserting conjugate. 1. Gram-scale production and purification. Biotechnol Prog 21:205–220CrossRefGoogle Scholar
  59. Niu W, Draths KM, Frost JW (2002) Benzene-free synthesis of adipic acid. Biotechnol Prog 18:201–211CrossRefGoogle Scholar
  60. Oh MK, Rohlin L, Kao KC, Liao JC (2002) Global expression profiling of acetate-grown Escherichia coli. J Biol Chem 277:13175–13183CrossRefGoogle Scholar
  61. Park SJ, Tseng CP, Gunsalus RP (1995) Regulation of succinate dehydrogenase (sdhCDAB) operon expression in Escherichia coli in response to carbon supply and anaerobiosis: role of ArcA and Fnr. Mol Microbiol 15:473–482CrossRefGoogle Scholar
  62. Park SJ, Chao G, Gunsalus RP (1997) Aerobic regulation of the sucABCD genes of Escherichia coli, which encode alpha-ketoglutarate dehydrogenase and succinyl coenzyme A synthetase: roles of ArcA, Fnr, and the upstream sdhCDAB promoter. J Bacteriol 179:4138–4142Google Scholar
  63. Perrenoud A, Sauer U (2005) Impact of global transcriptional regulation by ArcA, ArcB, Cra, Crp, Cya, Fnr, and Mlc on glucose catabolism in Escherichia coli. J Bacteriol 187:3171–3179CrossRefGoogle Scholar
  64. Phue JN, Shiloach J (2004) Transcription levels of key metabolic genes are the cause for different glucose utilization pathways in E. coli B (BL21) and E. coli K (JM109). J Biotechnol 109:21–30CrossRefGoogle Scholar
  65. Plumbridge J (2002) Regulation of gene expression in the PTS in Escherichia coli: the role and interactions of Mlc. Curr Opin Microbiol 5:187–193CrossRefGoogle Scholar
  66. Polen T, Wendisch VF (2004) Genomewide expression analysis in amino acid-producing bacteria using DNA microarrays. Appl Biochem Biotechnol 118:215–232CrossRefGoogle Scholar
  67. Polen T, Rittmann D, Wendisch VF, Sahm H (2003) DNA microarray analyses of the long-term adaptive response of Escherichia coli to acetate and propionate. Appl Environ Microbiol 69:1759–1774CrossRefGoogle Scholar
  68. Polen T, Kramer M, Bongaerts J, Wubbolts M, Wendisch VF (2005) The global gene expression response of Escherichia coli to l-phenylalanine. J Biotechnol 115:221–237CrossRefGoogle Scholar
  69. Rhodius V, Van Dyk TK, Gross C, LaRossa RA (2002) Impact of genomic technologies on studies of bacterial gene expression. Annu Rev Microbiol 56:599–624CrossRefGoogle Scholar
  70. Rinas U, Kracke-Helm HA, Schügerl K (1989) Glucose as a substrate in recombinant strain fermentation technology. Appl Microbiol Biotechnol 31:163–167CrossRefGoogle Scholar
  71. Salgado H, Gama-Castro S, Peralta-Gil M, Diaz-Peredo E, Sanchez-Solano F, Santos-Zavaleta A, Martinez-Flores I, Jimenez-Jacinto V, Bonavides-Martinez C, Segura-Salazar J, Martinez-Antonio A, Collado-Vides J (2006) RegulonDB (version 5.0): Escherichia coli K-12 transcriptional regulatory network, operon organization, and growth conditions. Nucleic Acids Res 34:D394–D397CrossRefGoogle Scholar
  72. Sambrook J, Russel D (2001) Molecular cloning: a laboratory manual. 3rd edn. Cold Spring Harbor Laboratoy Press, Cold Spring Harbor, NYGoogle Scholar
  73. Sanchez AM, Bennett GN, San KY (2005) Efficient succinic acid production from glucose through overexpression of pyruvate carboxylase in an Escherichia coli alcohol dehydrogenase and lactate dehydrogenase mutant. Biotechnol Prog 21:358–365CrossRefGoogle Scholar
  74. Schmidt K et al (1999) Quantification of intracellular metabolic fluxes from fractional enrichment and 13C–13C coupling constraints on the isotopomer distribution in labeled biomass components. Metab Eng 1:166–179CrossRefGoogle Scholar
  75. Shen J, Gunsalus RP (1997) Role of multiple ArcA recognition sites in anaerobic regulation of succinate dehydrogenase (sdhCDAB) gene expression in Escherichia coli. Mol Microbiol 26:223–236CrossRefGoogle Scholar
  76. Soutourina OA, Krin E, Laurent-Winter C, Hommais F, Danchin A, Bertin PN (2002) Regulation of bacterial motility in response to low pH in Escherichia coli: the role of H-NS protein. Microbiology 148:1543–1551Google Scholar
  77. Spencer ME, Guest JR (1973) Isolation and properties of fumarate reductase mutants of Escherichia coli. J Bacteriol 114:563–570Google Scholar
  78. Swartz JR (2001) Advances in Escherichia coli production of therapeutic proteins. Curr Opin Biotechnol 12:195–201CrossRefGoogle Scholar
  79. Takeda S, Matsushika A, Mizuno T (1999) Repression of the gene encoding succinate dehydrogenase in response to glucose is mediated by the EIICB(Glc) protein in Escherichia coli. J Biochem (Tokyo) 126:354–360Google Scholar
  80. Tao H, Bausch C, Richmond C, Blattner FR, Conway T (1999) Functional genomics: expression analysis of Escherichia coli growing on minimal and rich media. J Bacteriol 181:6425–6440Google Scholar
  81. Underwood SA, Zhou S, Causey TB, Yomano LP, Shanmugam KT, Ingram LO (2002) Genetic changes to optimize carbon partitioning between ethanol and biosynthesis in ethanologenic Escherichia coli. Appl Environ Microbiol 68:6263–6272CrossRefGoogle Scholar
  82. Vemuri GN, Eiteman MA, Altman E (2002) Effects of growth mode and pyruvate carboxylase on succinic acid production by metabolically engineered strains of Escherichia coli. Appl Environ Microbiol 68:1715–1727CrossRefGoogle Scholar
  83. Walsh K, Koshland DE Jr (1985) Characterization of rate-controlling steps in vivo by use of an adjustable expression vector. Proc Natl Acad Sci USA 82:3577–3581CrossRefGoogle Scholar
  84. Weber H, Polen T, Heuveling J, Wendisch VF, Hengge R (2005) Genome-wide analysis of the general stress response network in Escherichia coli: sigmaS-dependent genes, promoters, and sigma factor selectivity. J Bacteriol 187:1591–1603CrossRefGoogle Scholar
  85. Weitzman PD, Dunmore P (1969) Citrate synthases: allosteric regulation and molecular size. Biochim Biophys Acta 171:198–200Google Scholar
  86. Wendisch VF, de Graaf AA, Sahm H (1997) Accurate determination of 13C enrichments in nonprotonated carbon atoms of isotopically enriched amino acids by 1H nuclear magnetic resonance. Anal Biochem 245:196–202CrossRefGoogle Scholar
  87. Wendisch VF, Zimmer DP, Khodursky A, Peter B, Cozzarelli N, Kustu S (2001) Isolation of Escherichia coli mRNA and comparison of expression using mRNA and total RNA on DNA microarrays. Anal Biochem 290:205–213CrossRefGoogle Scholar
  88. Wendisch VF, Bott M, Eikmanns BJ (2006) Metabolic engineering of Escherichia coli and Corynebacterium glutamicum for biotechnological production of organic acids and amino acids. Curr Opin Microbiol 9:268–274CrossRefGoogle Scholar
  89. Wilde RJ, Guest JR (1986) Transcript analysis of the citrate synthase and succinate dehydrogenase genes of Escherichia coli K12. J Gen Microbiol 132:3239–3251Google Scholar
  90. Wolfe AJ (2005) The acetate switch. Microbiol Mol Biol Rev 69:12–50CrossRefGoogle Scholar
  91. Xu B, Jahic M, Blomsten G, Enfors SO (1999a) Glucose overflow metabolism and mixed-acid fermentation in aerobic large-scale fed-batch processes. Appl Microbiol Biotechnol 51:564–571CrossRefGoogle Scholar
  92. Xu B, Jahic M, Enfors SO (1999b) Modeling of overflow metabolism in batch and fed-batch cultures of Escherichia coli. Biotechnol Prog 15:81–90CrossRefGoogle Scholar
  93. Zheng M, Wang X, Templeton LJ, Smulski DR, LaRossa RA, Storz G (2001) DNA microarray-mediated transcriptional profiling of the Escherichia coli response to hydrogen peroxide. J Bacteriol 183:4562–4570CrossRefGoogle Scholar
  94. Zheng D, Constantinidou C, Hobman JL, Minchin SD (2004) Identification of the CRP regulon using in vitro and in vivo transcriptional profiling. Nucleic Acids Res 32:5874–5893CrossRefGoogle Scholar
  95. Zhou S, Causey TB, Hasona A, Shanmugam KT, Ingram LO (2003) Production of optically pure d-lactic acid in mineral salts medium by metabolically engineered Escherichia coli W3110. Appl Environ Microbiol 69:399–407CrossRefGoogle Scholar
  96. Zimmer DP et al (2000) Nitrogen regulatory protein C-controlled genes of Escherichia coli: scavenging as a defense against nitrogen limitation. Proc Natl Acad Sci USA 97:14674–14679CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Andrea Veit
    • 1
  • Tino Polen
    • 1
    • 2
  • Volker F. Wendisch
    • 1
    • 2
    Email author
  1. 1.Institute of Biotechnology 1Research Center JuelichJuelichGermany
  2. 2.Institute of Molecular Microbiology and BiotechnologyWestfalian Wilhelms University MuensterMuensterGermany

Personalised recommendations