Advertisement

Applied Microbiology and Biotechnology

, Volume 74, Issue 1, pp 107–112 | Cite as

Characterization of thermostable native alkaline phosphatase from an aerobic hyperthermophilic archaeon, Aeropyrum pernix K1

  • Is Helianti
  • Takako Okubo
  • Yasutaka Morita
  • Eiichi TamiyaEmail author
Biotechnologically Relevant Enzymes and Proteins

Abstract

This paper reports the characterization of an alkaline phosphatase (AP) from an aerobic hyperthermophilic Archaeon Aeropyrum pernix K1. The native AP was purified into homogeneity. The enzyme is predicted as a homodimeric structure with a native molecular mass of about 75 kDa and monomer of about 40 kDa. Apparent optimum pH and temperature were estimated at 10.0 and above 95°C, respectively. Magnesium ion increased both the stability and the activity of the enzyme. A. pernix AP has been demonstrated as a very thermostable AP, retaining about 76% of its activity after being incubated at 90°C for 5.5 h and 67% of its activity after being incubated at 100°C for 2.5 h, respectively, under the presence of Mg(II). Enzyme activity was increased in addition of exogenous Mg(II), Ca(II), Zn(II), and Co(II).

Keywords

Hyperthermophilic Aeropyrum pernix Thermostable Alkaline phosphatase 

References

  1. Anba J, Bidaud M, Vasil ML, Lazdunski A (1990) Nucleotide sequence of the Pseudomonas aeruginosa phoB gene, the regulatory gene for the phosphate regulon. J Bacteriol 172:4685–4689Google Scholar
  2. Besman M, Coleman JE (1985) Isozymes of bovine intestinal alkaline phosphatase. J Biol Chem 260:11190–11193Google Scholar
  3. Bortolato M, Besson F, Roux B (1999) Role of metal ions on the secondary and quaternary structure of alkaline phosphatase from bovine intestinal mucosa. Proteins 37:310–318CrossRefGoogle Scholar
  4. Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254CrossRefGoogle Scholar
  5. Bradshaw RA, Cancedda F, Ericsson LH, Neumann PA, Piccoli SP, Schlesinger MJ, Shriefer K, Walsh KA (1981) Amino acid sequence of Escherichia coli alkaline phosphatase. Proc Natl Acad Sci USA 78:3473–3477CrossRefGoogle Scholar
  6. Croocker PC, Sako Y, Uchida A (1999) Purification and characterization of intracellular heat-stable proteinase (pernilase) from the marine hyperthermophilic archaeon Aeropyrum pernix K1. Extremophiles 3:3–9CrossRefGoogle Scholar
  7. Dong G, Zeikus JG (1997) Purification and characterization of alkaline phosphatase from Thermotoga neapolitana. Enzyme Microb Technol 21:335–340CrossRefGoogle Scholar
  8. Goldman S, Hecht K, Eisenberg H, Mevarech M (1990) Extracellular Ca2+-dependent inducible alkaline phosphatase from the extremely halophilic archaebacterium Haloarcula marismortui. J Bacteriol 172:7065–7070Google Scholar
  9. Helianti I, Morita Y, Yamamura A, Murakami Y, Yokoyama K, Tamiya (2001) Characterization of native glutamate dehydrogenase from an aerobic hyperthermophilic archaeon Aeropyrum pernix K1. Appl Microbiol Biotechnol 56:388–394CrossRefGoogle Scholar
  10. Helianti I, Morita Y, Murakami Y, Yokoyama K, Tamiya (2002) Expression of two kinds of recombinant glutamate dehydrogenase from Aeropyrum pernix with different N-terminal sequence length in Escherichia coli. Appl Microbiol Biotechnol 59:462–466CrossRefGoogle Scholar
  11. Hodson AW, Skillen AW (1988) Comparison of diazo-coupling, formazan, and silver staining techniques for visualizing alkaline phosphatase isoenzymes after electrophoresis in homogeneous-pore and gradient-pore polyacrylamide gels. Anal Biochem 169:253–261CrossRefGoogle Scholar
  12. Karamyshev AL, Karamysheva ZN, Kajava AV, Ksenzenko VN, Nesmeyanova MA (1998) Processing of Escherichia coli alkaline phosphatase: role of the primary structure of the signal peptide cleavage region. J Mol Biol 277:859–870CrossRefGoogle Scholar
  13. Kawarabayasi Y, Hino Y, Horikawa H, Yamazaki S, Haikawa Y, Jin-no K, Takahashi M, Sekine M, Baba S, Ankai A, Kosugi H, Hosoyama A, Fukui S, Nagai Y, Nishijima K, Nakazawa H, Takamiya M, Masuda S, Funahashi T, Tanaka T, Kudoh Y, Yamazaki J, Kushida N, Oguchi A, Kikuchi H et al (1999) Complete genome sequence of an aerobic hyperthermophilic crenarcheon, Aeropyrum pernix K1. DNA Res 6:83–101CrossRefGoogle Scholar
  14. Kim EE, Wyckoff HW (1991) Reaction mechanism of alkaline phosphatase based on crystal structures. Two-metal ion catalysis. J Mol Bio 218:449–464CrossRefGoogle Scholar
  15. Mori S, Okamoto M, Nishibori M, Ichimura M, Sakayama J, Endo H (1999) Purification and characterization of alkaline phosphatase from Bacillus stearothermophilus. Biotechnol Appl Biochem 29:235–239Google Scholar
  16. Moura RS, Martín JF, Martín A, Liras P (2001) Substrate analysis and molecular cloning of the extracellular alkaline phosphatase of Streptomyces griseus. Microbiol 147:1525–1533Google Scholar
  17. Niehaus F, Bertoldo C, Kahler M, Antranikian G (1999) Extremophiles as a source of novel enzymes for industrial application. Appl Microbiol Biotechnol 51:711–729CrossRefGoogle Scholar
  18. Pantazaki AA, Karagiorgas AA, Liakopoulou-Kyriakides M, Kyriakidis HA (1998) Hyperalkaline and thermostable phosphatase in Thermus thermophilus. Appl Biochem Biotechnol 75:249–259Google Scholar
  19. Rina M, Pozidis C, Mavromatis K, Tzanodaskalaki M, Kokkinidis M, Bouriotis V (2000) Alkaline phosphatase from the Antarctic strain TAB5: properties and psychrophilic adaptations. Eur J Biochem 267 1230–1238 (FEBS 2000)CrossRefGoogle Scholar
  20. Robyl JF, White BJ (eds) (1987) Biochemical techniques: theory and practices. Brooks-cde, Monterey CA, page 247Google Scholar
  21. Sako Y, Nomura N, Uchida A, Ishida Y, Morii H, Koga Y, Hoaki T, and Maruyama T (1996) Aeropyrum pernix gen. nov., sp. nov., a novel aerobic hyperthermophilic archaeon growing at temperatures up to 100°C. Int J Syst Bacteriol 46:1010–1077CrossRefGoogle Scholar
  22. Sako Y, Croocker PC, Ishida Y (1997) An extremely heat-stable extracellular proteinase (aeropyrolysin) from the hyperthermophilic archaeon Aeropyrum pernix K1. FEBS Lett 415:329–334CrossRefGoogle Scholar
  23. Trowsdale J, Martin D, Bicknell D, and Campbell I (1990) Alkaline phosphatases. Biochem Soc Trans 18:178–180Google Scholar
  24. Vieille C, Zeikus GJ (2001) Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiol Mol Biol Rev 65:1–43CrossRefGoogle Scholar
  25. Zappa S, Rolland JL, Flament D, Gueguen Y, Boudrant J, and Dietrich (2001) Characterization of a highly thermostable alkaline phosphatase from the euryarchaeon Pyrococcus abyssi. Appl Environ Microbiol 67:4504–4511CrossRefGoogle Scholar
  26. Zueva NN, Dalev PG, Lazarova DL (1993) Properties, production, and practical uses of alkaline phosphatase. Biokhimiia 58:1009–1023Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Is Helianti
    • 1
    • 2
  • Takako Okubo
    • 1
  • Yasutaka Morita
    • 1
    • 3
  • Eiichi Tamiya
    • 1
    Email author
  1. 1.School of Materials ScienceJapan Advanced Institute of Science and TechnologyIshikawaJapan
  2. 2.Center for Bioindustrial Technology (BPPT)JakartaIndonesia
  3. 3.Department of Biological and Environmental Chemistry, School of Humanity-Oriented Science and EngineeringKinki UniversityFukuokaJapan

Personalised recommendations