Applied Microbiology and Biotechnology

, Volume 73, Issue 4, pp 723–734 | Cite as

Ecological and biotechnological aspects of lichens



Lichens and the partners from three different kingdoms are both taxonomically and physiologically a very diverse group, which makes them interesting from both ecological and biotechnological points of view. A lichen is a mutual ecophysiological innovation in many extreme environments in which symbiosis seems to protect the partners. Lichen’s ability to grow in harsh environments can be advantageous, resulting in important ecological niches, or disadvantageous when lichens occupy and cause biodeterioration of cultural monuments. Recently, new candidate compounds for drugs, UVB protection, and antifreeze proteins for frozen foods were discovered. Lichens were also found to have potential in bioplastic degradation and prevention of desertification. Nevertheless, there is still large potential for further industrial screening and research on lichen products. Due to improved culture techniques of isolated symbionts, increased knowledge of their secondary metabolism and improved methods for solubilizing lichen metabolites, the screening and activity tests can be implemented more easily today than in the past.


Lichen Green algae Cyanobacteria Fungi Symbiosis Natural product 


  1. Adamo P, Violante P (2000) Weathering of rocks and neogenesis of minerals associated with lichen activity. Appl Clay Sci 16:229–256CrossRefGoogle Scholar
  2. Adams DG (2000) Symbiotic interactions. In: Whitton BA, Potts M (eds) Ecology of cyanobacteria. Kluwer, Dordrecht, pp 523–561Google Scholar
  3. Adeyemi AO, Gadd GM (2005) Fungal degradation of calcium-, lead-, and silicon-bearing minerals. Biometals 18:269–281CrossRefGoogle Scholar
  4. Anonymous (1993) JP5271064-1993-10-19Google Scholar
  5. Bačkor M, Fahselt D (2005) Tetrazolium reduction as an indicator of environmental stress in lichens and isolated bionts. Environ Exp Bot 53:125–133CrossRefGoogle Scholar
  6. Banfield JF, Barker WW, Welch SA, Taunton A (1999) Biological impact on mineral dissolution: application of the lichen model to understanding mineral weathering in the rhizosphere. Proc Natl Acad Sci USA 96:3404–3411CrossRefGoogle Scholar
  7. Behera BC, Adawadkar B, Makhija U (2006) Tissue-culture of selected species of the Graphis lichen and their biological activities. Fitoterapia 77(3):208–215CrossRefGoogle Scholar
  8. Bent S, Ko R (2004) Commonly used herbal medicines in the United States: a review. Am J Med 116:478–485CrossRefGoogle Scholar
  9. Berry MJ, Doucet CJ, Lundheim RS, Sevilla M-P, Whiteman S-A (2001) Anti-freeze proteins, their production and use. WO patent appl. WO0183534-2001-11-08Google Scholar
  10. Bézivin C, Tomasi S, Rouaud I, Delcros J-G, Boustie J (2004) Cytotoxic activity of compounds from the lichen: Cladonia convoluta. Planta Med 70:874–877CrossRefGoogle Scholar
  11. Biondi N, Piccardi R, Margheri MC, Rofoldi L, Smith GD, Tredici MR (2004) Evaluation of Nostoc strain ATCC 53789 as a potential source of natural pesticides. Appl Environ Microbiol 70:3313–3320CrossRefGoogle Scholar
  12. Blanco Y, Blanch M, Fontaniella B, Legaz ME, Millanes AM, Pereira EC, Vicente C (2002) Bioproduction of lichen phenolics by immobilized lichen cells with emphasis on the role of epiphytic bacteria. J Hattori Bot Lab 92:245–260Google Scholar
  13. Bowker MA, Belnap J, Davidson DW, Phillips SL (2005) Evidence for micronutrient limitation of biological soil crusts: importance to arid-lands restoration. Ecol Appl 15:1941–1951Google Scholar
  14. Brunauer G, Stocker-Wörgötter E (2005) Culture of lichen fungi for future production of biologically active compounds. Symbiosis 38:187–201Google Scholar
  15. Burja AM, Banaigs B, Abou-Mansour E, Burgess JG, Wright PC (2001) Marine cyanobacteria—a prolific source of natural products. Tetrahedron 57:9347–9377CrossRefGoogle Scholar
  16. Büdel B, Scheidegger C (1996) Thallus morphology and anatomy. In: Nash TH III (ed) Lichen biology. Cambridge University Press, Cambridge, pp 37–64Google Scholar
  17. Castenholz RW (2001) Phylum BX. Cyanobacteria. In: Boone DR, Castenholz RW (eds) Bergey’s manual of systematic bacteriology, vol. 1, 2nd edn. Springer, Berlin Heidelberg New York, pp 473–599Google Scholar
  18. Choudhary MI, Azizuddin, Jalil S, Atta-ur-Rahman (2005) Bioactive phenolic compounds from a medicinal lichen, Usnea longissima. Phytochemistry 66:2346–2350CrossRefGoogle Scholar
  19. Claes ED, Srebnik M, Lev O, Hochberg M, Dor I, Torres-Kerner A, Dembitsky VM (2005) Utilization of natural pigments from lichens, cyanobacteria, fungi and plants for sun protection. WO2002IL00725 20020903, US20050488426 20050210 Publication info: WO03020236-2003-03-13, Publication info: US2005129630-2005-06-16Google Scholar
  20. Cohen PA, Towers GHN (1995) The anthraquinones of Heterodermia obscurata. Phytochemistry 40:911–915CrossRefGoogle Scholar
  21. D’Agostino G, del Campo J, Mellado B, Izquierdo MA, Minarik T, Cirri L, Marini L, Perez-Gracia JL, Scambia G (2006) A multicenter phase II study of the cryptophycin analog LY355703 in patients with platinum-resistant ovarian cancer. Int J Gynecol Cancer 16:71–76CrossRefGoogle Scholar
  22. Davies JE, Waters B, Saxena G (2002) Method for inhibiting eukaryotic protein kinases. US Patent US20000688545 Publication info: US6455270-2002-09-24Google Scholar
  23. DePriest PT (2004) Early molecular investigations of lichen-forming symbionts: 1986–2001*. Annu Rev Microbiol 58:273–301CrossRefGoogle Scholar
  24. Drewello R, Weissmann R (1997) Microbially influenced corrosion of glass. Appl Microbiol Biotechnol 47:337–346CrossRefGoogle Scholar
  25. Durazo FA, Lassman C, Han SHB, Saab S, Lee NP, Kawano M, Saggi B, Farmer DG, Yersiz H, Goldstein RLI, Ghobrial M, Busuttil RW (2004) Fulminant liver failure due to usnic acid for weight loss. Am J Gastroenterol 99:950–952CrossRefGoogle Scholar
  26. Elix JA (1996) Biochemistry and secondary metabolites. In: Nash TH III (ed) Lichen biology. Cambridge University Press, Cambridge, pp 154–180Google Scholar
  27. Esimone CO, Grunwald T, Wildner O, Nchinda G, Tippler B, Proksch P, Uberla K (2005) In vitro pharmacodynamic evaluation of antiviral medicinal plants using a vector-based assay technique. J Appl Microbiol 99:1346–1355CrossRefGoogle Scholar
  28. Fahselt D (1994) Secondary biochemistry of lichens. Symbiosis 16:117–165Google Scholar
  29. Favero-Longo SE, Castelli D, Salvadori O, Belluso E, Piervittori R (2005) Pedogenetic action of the lichens Lecidea atrobrunnea, Rhizocarpon geographicum gr. and Sporastatia testudinea on serpentinized ultramafic rocks in an alpine environment. Int Biodeterior Biodegrad 56:17–27CrossRefGoogle Scholar
  30. Favreau JT, Ryu ML, Braunstein G, Orshansky G, Park SS, Coody GL, Love LA, Fong TL (2002) Severe hepatotoxicity associated with the dietary supplement LipoKinetix. Ann Intern Med 136:590–595Google Scholar
  31. Francolini I, Norris P, Piozzi A, Donelli G, Stoodley P (2004) Usnic acid, a natural antimicrobial agent able to inhibit bacterial biofilm formation on polymer surfaces. Antimicrob Agents Chemother 48:4360–4365CrossRefGoogle Scholar
  32. Friedl T, Büdel B (1996) Photobionts. In: Nash TH III (ed) Lichen biology. Cambridge University Press, Cambridge, pp 8–23Google Scholar
  33. Garg A, Shasany AK, Chand P, Pal A, Tiruppadiripuliyur R, Gupta VK, Saikia D, Darokar MP, Srivastava SK, Khanuja SPS, Verma SC (2004) Methyl-beta-orcinolcarboxylate from lichen (Everniastrum cirrhatum) for use for the treatment of fungal infections and cancer. Canadian Patent CA20032521055 Publication info: CA2521055-2004-14Google Scholar
  34. Garty J (2001) Biomonitoring atmospheric heavy metals with lichens: theory and application. Crit Rev Plant Sci 20:309–371CrossRefGoogle Scholar
  35. Gauslaa Y (2005) Lichen palatability depends on investments in herbivore defence. Oecologia 143:94–105CrossRefGoogle Scholar
  36. Guschina IA, Harwood JL (2006) Lead and copper effects on lipid metabolism in cultured lichen photobionts with different phosphorus status. Phytochemistry 67(16):1731–1739CrossRefGoogle Scholar
  37. Halama P, van Haluwin C (2004) Antifungal activity of lichen extracts and lichenic acids. BioControl 49:95–107CrossRefGoogle Scholar
  38. Han D et al (2004) Usnic acid-induced necrosis of cultured mouse hepatocytes: inhibition of mitochondrial function and oxidative stress. Biochem Pharmacol 67:439–451CrossRefGoogle Scholar
  39. Haraldsdóttir S, Gudlaugsdóttir E, Ingólfsdóttir K, Ögmundsdóttir HM (2004) Anti-proliferative effects of lichen-derived lipoxygenase inhibitors on twelve human cancer cell lines of different tissue origin in vitro. Planta Med 70:1098–1100CrossRefGoogle Scholar
  40. Hawksworth DL (2001) The magnitude of fungal diversity: the 1.5 million species estimate revisited. Mycol Res 105: 1422–1432Google Scholar
  41. Hawksworth DL, Kirk PM, Sutton BC, Pegler DN (1995) Dictionary of the fungi. CAB, WallingfordGoogle Scholar
  42. He HY, Bigelis R, Yang HY, Chang LP, Singh MP (2005) Lichenicolins A and B, new bisnaphthopyrones from an unidentified lichenicolous fungus, strain LL-RB0668. J Antibiot 58:731–736CrossRefGoogle Scholar
  43. Hedenås H, Ericson L (2000) Epiphytic macrolichens as conservation indicators: successional sequence in Populus tremula stands. Biol Conser 93:43–53CrossRefGoogle Scholar
  44. Honegger R (1996a) Morphogenesis. In: Nash TH III (ed) Lichen biology. Cambridge University Press, Cambridge, pp 65–87Google Scholar
  45. Honegger R (1996b) Mycobionts. In: Nash TH III (ed) Lichen biology. Cambridge University Press, Cambridge, pp 24–36Google Scholar
  46. Ingolfsdottir K (2002) Usnic acid. Phytochemistry 61:729–736CrossRefGoogle Scholar
  47. Ingolfsdottir K, Lee SK, Bhat KPL, Lee K, Chai HB, Kristinsson H, Song LL, Gills J, Gudmundsdottir JT, Mata-Greenwood E, Jang MS, Pezzuto JM (2000) Evaluation of selected lichens from Iceland for cancer chemopreventive and cytotoxic activity. Pharm Biol 38:313–317CrossRefGoogle Scholar
  48. Kappen L (2000) Some aspects of the great success of lichens in Antarctica. Antarct Sci 12:314–324Google Scholar
  49. Kappen L, Schroeter B, Scheidegger C, Sommerkorn M, Hestmark G (1996) Cold resistance and metabolic activity of lichens below 0 degrees C. Adv Space Res 18:119–128CrossRefGoogle Scholar
  50. Karlen W, Black JL (2002) Estimates of lichen growth-rate in northern Sweden. Geogr Ann Ser A Phys Geogr 84A:225–232CrossRefGoogle Scholar
  51. Kashimoto (2003) Removing agent for lichen and method for removing lichen of tree. Japanese Patent JP20010280898 17 October 2001 Publication info: JP2003081710-2003-03-19Google Scholar
  52. Kershaw KA (1985) Physiological ecology of lichens. Cambridge University Press, CambridgeGoogle Scholar
  53. Kiurski JS, Ranogajec JG, Ulhelji AL, Radeka MM, Bokorov MT (2005) Evaluation of the effect of lichens on ceramic roofing tiles by scanning electron microscopy and energy-dispersive spectroscopy analyses. Scanning 27:113–119CrossRefGoogle Scholar
  54. Kranner I, Cram WJ, Zorn M, Wornik S, Yoshimura I, Stabentheiner E, Pfeifhofer HW (2005) Antioxidants and photoprotection in a lichen as compared with its isolated symbiotic partners. Proc Natl Acad Sci USA 102:3141–3146CrossRefGoogle Scholar
  55. Krasnogorskaja NN, Tsvileneva NJU, Minnullina GR, Zhuravleva SE (2005) Method for evaluation of atmosphere contamination by means of lichens. Russian Patent RU2260934Google Scholar
  56. Kristmundsdóttir T, Jónsdóttir E, ögmundsdóttir HM, Ingólfsdóttir K (2005) Solubilization of poorly soluble lichen metabolites for biological testing on cell lines. Eur J Pharm Sci 24:539–543CrossRefGoogle Scholar
  57. Kumar S, Müller K (1999a) Lichen metabolites. 2. Antiproliferative and cytotoxic activity of gyrophoric, usnic, and diffractic acid on human keratinocyte growth. J Nat Prod 62:821–823CrossRefGoogle Scholar
  58. Kumar S, Müller K (1999b) Lichen metabolites. 1. Inhibitory action against leukotriene B4, biosynthesis by a non-redox mechanism. J Nat Prod 62:817–820CrossRefGoogle Scholar
  59. Lee PC, Schmidt-Dannert C (2002) Metabolic engineering towards biotechnological production of carotenoids in microorganisms. Appl Microbiol Biotechnol 60:1–11CrossRefGoogle Scholar
  60. Lee KM, Gimore DF, Huss MJ (2005) Fungal degradation of the bioplastic PHB (poly-3-hydroxy-butyric acid). J Polym Environ 13:213–219CrossRefGoogle Scholar
  61. Lewis LA, McCourt RM (2004) Green algae and the origin of the land plants. Am J Bot 91:1535–1556Google Scholar
  62. Llano GA (1948) Economic uses of lichens. Econ Bot 2:15–45Google Scholar
  63. Lohtander K, Oksanen I, Rikkinen J (2003) Genetic diversity of green algal and cyanobacterial photobionts in Nephroma (Peltigerales). Lichenologist 35:325–339CrossRefGoogle Scholar
  64. Lurie S, Garty J (1991) Ethylene production by the lichen Ramalina duriaei. Ann Bot 68:317–319Google Scholar
  65. Lutzoni F, Pagel M, Reeb V (2001) Major fungal lineages derived from lichen symbiotic ancestors. Nature 411:937–940CrossRefGoogle Scholar
  66. Miao V, Coeffet-LeGal MF, Brown D (2001) Genetic approaches to harvesting lichen products. Trends Biotechnol 19:349–355CrossRefGoogle Scholar
  67. Müller K (2001) Pharmaceutically relevant metabolites from lichens. Appl Microbiol Biotechnol 56:9–16CrossRefGoogle Scholar
  68. Murtagh GJ, Dyer PS, Crittenden PD (2000) Sex and the single lichen. Nature 404:564CrossRefGoogle Scholar
  69. Nash III TH (1996a) Introduction. In: Nash TH III (ed) Lichen biology. Cambridge University Press, Cambridge, pp 1–7Google Scholar
  70. Nash III TH (1996b) Photosynthesis, respiration, productivity and growth. In: Nash TH III (ed) Lichen biology. Cambridge University Press, Cambridge, pp 88–120Google Scholar
  71. Nash III TH (1996c) Nitrogen, its metabolism and potential contribution to ecosystem. In: Nash TH III (ed) Lichen biology. Cambridge University Press, Cambridge, pp 121–135Google Scholar
  72. National Food Agency Finland (2006) Consumers should take a critical view of pills and pellets designed for weight loss or weight control. National Food Agency, Finland, press releases 22.02.2006Google Scholar
  73. Nybakken L, Solhaug KA, Bilger W, Gauslaa Y (2004) The lichens Xanthoria elegans and Cetraria islandica maintain a high protection against UV-B radiation in Arctic habitats. Oecologia 140:211–216CrossRefGoogle Scholar
  74. O’Brien H, Miadlikowska J, Lutzoni F (2005) Assessing host specialization in symbiotic Cyanobacteria associated with four closely related species of the lichen fungus Peltigera. Eur J Phycol 40:363–378CrossRefGoogle Scholar
  75. Olofsson J (2006) Short- and long-term effects of changes in reindeer grazing pressure on tundra heath vegetation. J Ecol 94:431–440CrossRefGoogle Scholar
  76. Oksanen I (2004) Specificity in cyanobacterial lichen symbiosis and bioactive metabolites (ethylene and microcystins). Dissertationes Viikki Biocentri Universitatis Helsingiensis, p 23Google Scholar
  77. Oksanen I, Lohtander K, Sivonen K, Rikkinen J (2004a) Repeat-type distribution in trnL intron does not correspond with species phylogeny: comparison of the genetic markers 16S rRNA and trnL intron in heterocystous cyanobacteria. Int J Syst Evol Microbiol 54:765–772CrossRefGoogle Scholar
  78. Oksanen I, Jokela J, Fewer DP, Wahlsten M, Rikkinen J, Sivonen K (2004b) Discovery of rare and highly toxic microcystins from lichen-associated cyanobacterium Nostoc sp. strain IO-102-I. Appl Environ Microbiol 70:5756–5763CrossRefGoogle Scholar
  79. Oren A (2004) A proposal for further integration of the Cyanobacteria under the Bacteriological Code. Int J Syst Evol Microbiol 54:1895–1902CrossRefGoogle Scholar
  80. Osborne BA, Sprint JI (2002) Ecology of the Nostoc–Gunnera symbiosis. In: Rai AN, Bergman B, Rasmussen U (eds) Cyanobacteria in symbiosis. Kluwer, Dordrecht, pp 233–251Google Scholar
  81. Ott S, Krieg T, Spanier U, Schieleit P (2000) Phytohormones in lichens with emphasis on ethylene biosynthesis and functional aspects on lichen symbiosis. Phyton Ann Rei Bot 40:83–94Google Scholar
  82. Pacey MS (2002) Enzymatic oxidation. Japanese Patent JP20010151888 Publication info: JP2002034585-2002-02-05Google Scholar
  83. Piervittori R, Salvadori O, Isocrono D (2004) Literature on lichens and biodeterioration of stonework. IV. Lichenologist 36:145–157CrossRefGoogle Scholar
  84. Pramyothin P, Janthasoot W, Pongnimiprasert N, Phrukudom S, Ruangrungsi N (2004) Hepatotoxic effect of (+)usnic acid from Usnea siamensis Wainio in rats, isolated rat hepatocytes and isolated rat liver mitochondria. J Ethnopharmacol 90:381–387CrossRefGoogle Scholar
  85. Rai AN (1990) Cyanobacteria–fungal symbioses: the cyanolichens. In: Rai AN (ed) Handbook of symbiotic cyanobacteria. CRC Press, Boca Raton, FL, pp 9–41Google Scholar
  86. Richardson DHS (1975) The vanishing lichens: their history, biology and importance. David & Charles, Newton Abbot, LondonGoogle Scholar
  87. Richardson DHS (1988) CRC Handbook of lichenology: medicinal and other economic aspects of lichens. CRC Press, Boca Raton, FLGoogle Scholar
  88. Richardson DHS (2002) Reflections on lichenology: achievements over the last 40 years and challenges for the future. Can J Bot 80:101–113CrossRefGoogle Scholar
  89. Rikkinen J, Oksanen I, Lohtander K (2002) Lichen guilds share related cyanobacterial symbionts. Science 297:357–357CrossRefGoogle Scholar
  90. Rundel PW (1988) Water relations. In: Galun M (ed) CRC handbook of lichenology, vol. 2. CRC Press, Boca Raton, FL, pp 17–36Google Scholar
  91. Sánchez-Baracaldo P, Hayes PK, Blank CE (2005) Morphological and habitat evolution in the Cyanobacteria using a compartmentalization approach. Geobiology 3:145–165CrossRefGoogle Scholar
  92. Sancho LG, Pintado A (2004) Evidence of high annual growth rate for lichens in the maritime Antarctic. Polar Biol 27:312–319CrossRefGoogle Scholar
  93. Savvateeva LJU, Turshuk EG, Savvateev EV, Turshuk LD (2002) Method of manufacturing quick-frozen dough products with filler. Russian Patent RU19980122861 Publication number: RU2162637 Publication date: 2001-02-10Google Scholar
  94. Schempp C, Jocher A, Engel K, Huyke C (2005) Pharmaceutical compositions from beard lichen (Usnea barbata) and St. John’s wort (Hypericum perforatum) and their use. WO Patent WO2005EP03657 Publication info: WO2005099728-2005-10-27Google Scholar
  95. Schepetkin IA, Quinn MT (2006) Botanical polysaccharides: macrophage immunomodulation and therapeutic potential. Int Immunopharmacol 6:317–333CrossRefGoogle Scholar
  96. Schlensog M, Pannewitz S, Green TGA, Schroeter B (2004) Metabolic recovery of continental Antarctic cryptogams after winter. Polar Biol 27:399–408CrossRefGoogle Scholar
  97. Seitz M, Reiser O (2005) Synthetic approaches towards structurally diverse γ-butyrolactone natural-product-like compounds. Curr Opin Chem Biol 9:285–292CrossRefGoogle Scholar
  98. Sesin DF (1989) Antifungal agent. US Patent US19880230283 Publication info: US4845085-1989-07-04Google Scholar
  99. Shahi SK, Patra M, Dikshit A, Upreti DK (2003) Parmelia cirrhatum: a potential source of broad spectrum natural antifungal. Phytother Res 17:399–400CrossRefGoogle Scholar
  100. Sidebottom CM, Smallwood M, Byass LJ (2004) Frozen food product. US20000582296 Publication info: US6774210-2004-08-10Google Scholar
  101. Stenroos S, Stocker-Wörgötter E, Yoshimura I, Myllys L, Thell A, Hyvonen J (2003) Culture experiments and DNA sequence data confirm the identity of Lobaria photomorphs. Can J Bot 81:232–247CrossRefGoogle Scholar
  102. Stepanenko LS, Maksimov OB, Mikhajlevskaja LL, Kinzirskij AS (1998) Agent showing antitumor and analgetic activity. Russian Patent RU19960120633Google Scholar
  103. Stocker-Wörgötter E (2001) Experimental lichenology and microbiology of lichens: culture experiments, secondary chemistry of cultured mycobionts, resynthesis, and thallus morphogenesis. Bryologist 104:576–581CrossRefGoogle Scholar
  104. Stocker-Wörgötter E (2005) Approaches to a biotechnology of lichen forming fungi: induction of polyketide pathways and the formation of chemosyndromes in axenically cultured mycobionts. Recent Res Devel Phytochem 9:115–131Google Scholar
  105. Stocker-Wörgötter E, Elix JA (2004) Experimental studies of lichenized fungi: formation of rare depsides and dibenzofurans by the cultures mycobiont of Bunodophoron patagonicum (Spaerophoraceae, lichenized Ascomycota). Bibl Lichenol 88:659–669Google Scholar
  106. Su BN, Cuendet M, Nikolic D, Kristinsson H, Ingolfsdottir K, van Breemen RB, Fong HHS, Pezzuto JM, Kinghorn AD (2003) NMR study of fumarprotocetraric acid, a complex lichen depsidone derivative from Cladonia furcata. Magn Reson Chem 41:391–394CrossRefGoogle Scholar
  107. Sugiyama T, Osanawa A, Imai N (1997) Agent for removing blue-green alga and lichen and removal of blue-green alga and lichen from concrete article. Japanese Patent JP19950247164 Publication info: JP9087106-1997-03-31Google Scholar
  108. Tehler A (1996) Systematics, phylogeny and classification. In: Nash TH III (ed) Lichen biology. Cambridge University Press, Cambridge, pp 217–239Google Scholar
  109. Trimurtulu G, Ohtanii I, Patterson GML, Moore RE, Corbett TH, Valeriote FA, Demchik L (1994) Total structures of cryptophycins, potent antitumor depsipeptides from the blue-green-alga Nostoc sp. strain GSV-224. J Am Chem Soc 116:4729–4737CrossRefGoogle Scholar
  110. Tschermak-Woess E (1988) The algal partner. In: Galun M (ed) CRC handbook of lichenology, vol. I. CRC Press, Boca Raton, FL, pp 39–92Google Scholar
  111. Vrablikova H, McEvoy M, Solhaug KA, Bartak M, Gauslaa Y (2006) Annual variation in photoacclimation and photoprotection of the photobiont in the foliose lichen Xanthoria parietina 83(2):151–162Google Scholar
  112. Yahr R, Vilgalys R, DePriest PT (2006) Geographic variation in algal partners of Cladonia subtenuis (Cladoniaceae) highlights the dynamic nature of a lichen symbiosis. New Phytol 171:847–860CrossRefGoogle Scholar
  113. Yang Z (2002) Method of spreading vegetation seed and sand-fixing liquid mixture to prevent and control desertification. Chinese Patent CN20011005652 20010313 Publication info: CN1374425-2002-10-16Google Scholar
  114. Yang J, Yang M (2001) Synergistic enzyme and its preparing process and usage. Chinese Patent CN19991019711 19990928 Publication info: CN1289844-2001-04-04Google Scholar
  115. Yu Z, Wu Z, Yu J (1997) Active biological protein source composition and its preparing method and use. Chinese Patent CN19951018065 19951107 Publication info: CN1149625-1997-05-14Google Scholar
  116. Yuan X, Xiao A, Taylor TN (2005) Lichen-like symbiosis 600 million years ago. Science 308:1017CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Division of Microbiology, Department of Applied Chemistry and MicrobiologyUniversity of HelsinkiHelsinkiFinland
  2. 2.Division of Plant Physiology, Department of BotanyUniversity of StockholmStockholmSweden

Personalised recommendations