Well-defined protein–polymer conjugates—synthesis and potential applications

  • Pall Thordarson
  • Benjamin Le Droumaguet
  • Kelly VeloniaEmail author


During the last decades, numerous studies have focused on combining the unique catalytic/functional properties and structural characteristics of proteins and enzymes with those of synthetic molecules and macromolecules. The aim of such multidisciplinary studies is to improve the properties of the natural component, combine them with those of the synthetic, and create novel biomaterials in the nanometer scale. The specific coupling of polymers onto the protein structures has proved to be one of the most straightforward and applicable approaches in that sense. In this article, we focus on the synthetic pathways that have or can be utilized to specifically couple proteins to polymers. The different categories of well-defined protein–polymer conjugates and the effect of the polymer on the protein function are discussed. Studies have shown that the specific conjugation of a synthetic polymer to a protein conveys its physico-chemical properties and, therefore, modifies the biodistribution and solubility of the protein, making it in certain cases soluble and active in organic solvents. An overview of the applications derived from such bioconjugates in the pharmaceutical industry, biocatalysis, and supramolecular nanobiotechnology is presented at the final part of the article.


Biohybrids Protein–polymer conjugates Nanotechnology 



The authors thank Gemma Thompson for assistance with the manuscript.


  1. Abuchowski A, Van Es T, Palczuk NC, Davis FF (1977) Alteration of immunological properties of bovine serum albumin by covalent attachment of polyethylene glycol. J Biol Chem 252:3578–3581Google Scholar
  2. Boerakker MJ, Hannink JM, Bomans PHH, Frederik PM, Nolte RJM, Meijer EM, Sommerdijk NAJM (2002) Giant amphiphiles by cofactor reconstitution. Angew Chem Int Ed Engl 41:4239–4241CrossRefGoogle Scholar
  3. Budisa N (2004) Prolegomena to future experimental efforts on genetic code engineering by expanding its amino acid repertoire. Angew Chem Int Ed Engl 43:6426–6463CrossRefGoogle Scholar
  4. Bulmus V, Ding Z, Long CJ, Stayton PS, Hoffman AS (2000) Site-specific polymer–streptavidin bioconjugate for pH-controlled binding and triggered release of biotin. Bioconjug Chem 11:78–83CrossRefGoogle Scholar
  5. Bückmann AF, Carrea G (1989) Synthesis and application of water-soluble macromolecular derivatives of the coenzymes NAD(H), NADP(H). Adv Biochem Eng Biotechnol 39:97–152Google Scholar
  6. Bückmann AF, Kula M-R, Wichmann R, Wandrey C (1981) An efficient synthesis of high-molecular-weight NAD(H) derivatives suitable for continuous operation with coenzyme-dependent enzyme systems. J Appl Biochem 3:301–315Google Scholar
  7. Bückmann AF, Wray V, Stocker A (1997) Synthesis of N 6-(2-aminoethyl)-FAD, N 6-(6-carboxyhexyl)-FAD, and related compounds. Methods Enzymol 280:360–374Google Scholar
  8. Caliceti P, Veronese FM (2003) Pharmacokinetic and biodistribution properties of poly(ethylene glycol)-protein conjugates. Adv Drug Deliv Rev 55:1261–1277CrossRefGoogle Scholar
  9. Chen G, Hoffman AS (1993) Preparation and properties of thermoreversible, phase-separating enzyme-oligo(N-isopropylacrylamide) conjugates. Bioconjug Chem 4:509–514CrossRefGoogle Scholar
  10. Cole C-A, Schreiner SM, Priest JH, Monji N, Hoffman AS (1987) N-isopropylacrylamide and N-acryloxysuccinimide copolymer—a thermally reversible, water-soluble, activated polymer for protein conjugation. ACS Symp Ser 350:245–254Google Scholar
  11. Dagani R (1995) Polymeric smart materials respond to changes in their environment. Chem Eng News 73(38):30–33Google Scholar
  12. DeSantis G, Jones JB (1999) Chemical modification of enzymes for enhanced functionality. Curr Opin Biotechnol 10:324–330CrossRefGoogle Scholar
  13. Ding Z, Chen G, Hoffman AS (1998) Unusual properties of thermally sensitive oligomer-enzyme conjugates of poly(N-isopropylacrylamide)-trypsin. J Biomed Mater Res 39:498–505CrossRefGoogle Scholar
  14. Ding Z, Long CJ, Hayashi Y, Bulmus EV, Hoffman AS, Stayton PS (1999) Thermoprecipitation of streptavidin via oligonucleotide-mediated self-assembly with poly(N-isopropylacrylamide). Bioconjug Chem 10:395–400CrossRefGoogle Scholar
  15. Ding Z, Fong RB, Long CJ, Stayton PS, Hoffman AS (2001) Size-dependent control of the binding of biotinylated proteins to streptavidin using a polymer shield. Nature 411:59–62CrossRefGoogle Scholar
  16. Dirks AJ, van Berkel SS, Hatzakis NS, Opsteen JA, van Delft FL, Cornelissen JJLM, Rowan AE, van Hest JCM, Rutjes FPJT, Nolte RJM (2005) Preparation of biohybrid amphiphiles via the copper catalysed Huisgen [3 + 2] dipolar cycloaddition reaction. Chem Commun (Camb) 33:4172–4174CrossRefGoogle Scholar
  17. Duncan R (2003) The dawning era of polymer therapeutics. Nat Rev Drug Discov 2:347–360CrossRefGoogle Scholar
  18. Fee CJ, Van Alstineb JM (2006) PEG-proteins: reaction engineering and separation issues. Chem Eng Sci 61:924–939CrossRefGoogle Scholar
  19. Gaertner HF, Offord RE (1996) Site-specific attachment of functionalized poly(ethylene glycol) to the amino terminus of proteins. Bioconjug Chem 7:38–44CrossRefGoogle Scholar
  20. Galaev IY, Mattiasson B (1993) Affinity thermoprecipitation: contribution of the efficiency of ligand–protein interaction and access of the ligand. Biotechnol Bioeng 41:1101–1106CrossRefGoogle Scholar
  21. Haag R, Kratz F (2006) Polymer therapeutics: concepts and applications. Angew Chem Int Ed Engl 45:1198–1215CrossRefGoogle Scholar
  22. Hamachi I, Shinkai S (1999) Chemical modification of the structures and functions of proteins by the cofactor reconstitution method. Eur J Org Chem 539–549Google Scholar
  23. Hannink JM, Cornelissen JJLM, Farrera JA, Foubert P, De Schryver FC, Sommerdijk NAJM, Nolte RJM (2001) Protein–polymer hybrid amphiphiles. Angew Chem Int Ed Engl 40:4732–4734CrossRefGoogle Scholar
  24. Hatzakis NS, Engelkamp H, Velonia K, Hofkens J, Christianen PCM, Svendsen A, Patkar SA, Vind J, Maan JC, Rowan AE, Nolte RJM (2006) Synthesis and single enzyme activity of a clicked lipase-BSA hetero-dimer. Chem Commun (Camb) 19:2012–2014CrossRefGoogle Scholar
  25. Heathcote EJ, Pockros PJ, Fried MW, Bain MA, DePamphilis J, Modi M (1999) The pharmacokinetics of PEGylated-40 k interferon alfa-2a (PEG-IFN) in chronic hepatitis C (CHC) patients with cirrhosis. Gastroenterology 116:A735CrossRefGoogle Scholar
  26. Heredia KL, Bontempo D, Ly T, Byers, JT, Halstenberg S, Maynard HD (2005) In situ preparation of protein-“smart” polymer conjugates with retention of bioactivity. J Am Chem Soc 127:16955–16960CrossRefGoogle Scholar
  27. Hermanson GT (1996) Bioconjugate techniques. Academic, San Diego, CAGoogle Scholar
  28. Hodgson DRW, Sanderson JM (2004) The synthesis of peptides and proteins containing non-natural amino acids. Chem Soc Rev 33:422–430CrossRefGoogle Scholar
  29. Hoffman AS, Stayton PS, Bulmus V, Chen G, Chen J, Cheung C, Chilkoti A, Ding Z, Dong L, Fong R, Lackey C A, Long CJ, Miura M, Morris JE, Murthy N, Nabeshima Y, Park TG, Press OW, Shimoboji T, Shoemaker S, Yang HJ, Monji N, Nowinski RC, Cole CA, Priest JH, Harris MJ, Nakamae K, Nishino T, Miyata T (2000) Really smart bioconjugates of smart polymers and receptor proteins. J Biomed Mater Res 52:577–586CrossRefGoogle Scholar
  30. Hooftman G, Herman S, Schacht E (1996) Poly(ethylene glycol)s with reactive endgroups. II. Practical consideration for the preparation of protein-PEG conjugates. J Bioact Compat Polym 11:135–159Google Scholar
  31. Joshi NS, Whitake LR, Francis MB (2004) A three-component Mannich-type reaction for selective tyrosine bioconjugation. J Am Chem Soc 126:15942–15943CrossRefGoogle Scholar
  32. Kiick KL, Saxon E, Tirrell DA, Bertozzi CR (2002) Incorporation of azides into recombinant proteins for chemoselective modification by the Staudinger ligation. Proc Natl Acad Sci U S A 99:19–24CrossRefGoogle Scholar
  33. Kinstler OB, Brems DN, Lauren SL, Paige AG, Hamburger JB, Treuheit MJ (1996) Characterization and stability of N-terminal PEGylated rhG-CSF. Pharm Res 13:996–1002CrossRefGoogle Scholar
  34. Klok H-A (2005) Biological-synthetic hybrid block copolymers: combining the best from two worlds. J Polym Sci A Polym Chem 43:1–17CrossRefGoogle Scholar
  35. Kodera Y, Matsushima A, Hiroto M, Nishimura H, Ishii A, Ueno T, Inada Y (1998) PEGylation of proteins and bioactive substances for medical and technical applications. Prog Polym Sci 23:1233–1271CrossRefGoogle Scholar
  36. Köhn M, Breinbauer R (2004) The Staudinger ligation—a gift to chemical biology. Angew Chem Int Ed Engl 43:3106–3116CrossRefGoogle Scholar
  37. Kolb HC, Finn MG, Sharpless KB (2001) Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Ed Engl 40:2004–2021CrossRefGoogle Scholar
  38. Lele BS, Murata H, Matyjaszewski K, Russell AJ (2005) Synthesis of uniform protein–polymer conjugates. Biomacromolecules 6:3380–3387CrossRefGoogle Scholar
  39. Lewis WG, Greem LG, Grynszpan F, Radiæ Z, Carlier PR, Taylor P, Finn MG, Sharpless KB (2002) Click chemistry in situ: acetylcholinesterase as a reaction vessel for the selective assembly of a femtomolar inhibitor from a array of building blocks. Angew Chem Int Ed Engl 41:1053–1057Google Scholar
  40. Maeda H (2001a) The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv Enzyme Regul 41:189–207CrossRefGoogle Scholar
  41. Maeda H (2001b) SMANCS and polymer-conjugated macromolecular drugs: advantages in cancer chemotherapy. Adv Drug Deliv Rev 46:169–185CrossRefGoogle Scholar
  42. Maeda H, Seymour L, Miyamoto Y (1992) Conjugation of anticancer agents and polymers: advantages of macromolecular therapeutics in vivo. Bioconjug Chem 3:351–362CrossRefGoogle Scholar
  43. Mantovani G, Lecolley F, Tao L, Haddleton DM, Clerx J, Cornelissen JJLM, Velonia K (2005) Design and synthesis of N-maleimido-functionalized hydrophilic polymers via copper-mediated living radical polymerization: a suitable alternative to PEGylation chemistry. J Am Chem Soc 127:2966–2973CrossRefGoogle Scholar
  44. Matthews KS, Chakerian AE, Gardner JA (1991) Protein chemical modification as probe of structure-function relationships. Methods Enzymol 208:468–496CrossRefGoogle Scholar
  45. McFarland JM, Francis MB (2005) Reductive alkylation of proteins using Iridium catalyzed transfer hydrogenation. J Am Chem Soc 127:13490–13491CrossRefGoogle Scholar
  46. Meredith GD, Wu HY, Allbritton NL (2004) Targeted protein functionalization using His-tags. Bioconjug Chem 15:969–982CrossRefGoogle Scholar
  47. Nguyen AL, Luong JHT (1989) Synthesis and applications of water-soluble reactive polymers for purification and immobilization of biomolecules. Biotechnol Bioeng 34:1186–1190CrossRefGoogle Scholar
  48. Niemeyer CM (2001) Nanoparticles, proteins, and nucleic acids: biotechnology meets materials science. Angew Chem Int Ed Engl 40:4128–4158CrossRefGoogle Scholar
  49. Ohno H, Yamaguchi N (1994) Redox reaction of poly(ethylene oxide)-modified hemoglobin in poly(ethylene oxide) oligomers at 120 degrees C. Bioconjug Chem 5:379–381CrossRefGoogle Scholar
  50. Omelyanenko V, Kopeckova P, Gentry C, Shiah JG, Kopecek J (1996) HPMA copolymer-anticancer drug-OV-TL16 antibody conjugates. 1. Influence of the method of synthesis on the binding affinity to ovcar-3 ovarian carcinoma cells in vitro. J Drug Target 3:357–373Google Scholar
  51. Pennadam SS, Firman K, Alexander C, Górecki DC (2004) Protein–polymer nano-machines. Towards synthetic control of biological processes. J Nanobiotechnology 2:8CrossRefGoogle Scholar
  52. Pettit DK, Bonnert TP, Eisenman J, Srinivasan S, Paxton R, Beers C, Lynch D, Miller B, Yost J, Grabstein KH, Gombotz WR (1996) Structure-function studies of interleukin 15 using site-specific mutagenesis, polyethylene glycol conjugation and homology modelling. J Biol Chem 272:2312–2318Google Scholar
  53. Qi D, Tann C-M, Haring D, Distefano MD (2001) Generation of new enzymes via covalent modification of existing proteins. Chem Rev 101:3081–3111CrossRefGoogle Scholar
  54. Roberts MJ, Bentley MD, Harris JM (2002) Chemistry for peptide and protein PEGylation. Adv Drug Deliv Rev 54:459–476CrossRefGoogle Scholar
  55. Sarikaya M, Tamerler C, Jen AK-Y, Schulten K, Babeyx F (2003) Molecular biomimetics: nanotechnology through biology. Nat Mater 2:577–585CrossRefGoogle Scholar
  56. Sato H (2002) Enzymatic procedure for site-specific pegylation of proteins. Adv Drug Deliv Rev 54:487–504CrossRefGoogle Scholar
  57. Saxon E, Armstrong JI, Bertozzi CR (2000) A “traceless” Staudinger ligation for the chemoselective synthesis of amide bonds. Org Lett 2:2141–2143CrossRefGoogle Scholar
  58. Schlick TF, Ding Z, Kovacs EW, Francis MB (2005) Dual-surface modification of the tobacco mosaic virus. J Am Chem Soc 127:3718–3723CrossRefGoogle Scholar
  59. Seeman NC, Belcher AM (2002) Emulating biology: building nanostructures from the bottom up. Proc Natl Acad Sci U S A 99:6451–6455CrossRefGoogle Scholar
  60. Shimoboji T, Ding Z, Stayton PS, Hoffman AS (2001) Mechanistic investigation of smart polymer–protein conjugates. Bioconjug Chem 12:314–319CrossRefGoogle Scholar
  61. Shimoboji T, Larenas E, Fowler T, Kulkarni S, Hoffman AS, Stayton PS (2002) Photoresponsive polymer-enzyme switches. Proc Natl Acad Sci U S A 99:16592–16596CrossRefGoogle Scholar
  62. Stayton PS, Shimoboji T, Long C, Chilkoti A, Chen G, Harris JM, Hoffman AS (1995) Control of protein-ligand recognition using a stimuli-responsive polymer. Nature 378:472–474CrossRefGoogle Scholar
  63. Takahashi K, Nishimura H, Yoshimoto T, Saito Y, Inada Y (1984) A chemical modification to make horseradish peroxidase soluble and active in benzene. Biochem Biophys Res Comm 121:261–265CrossRefGoogle Scholar
  64. Tilley SD, Francis MB (2006) Tyrosine-selective protein alkylation using π-allylpalladium complexes. J Am Chem Soc 128:1080–1081CrossRefGoogle Scholar
  65. Ulbrich K, Strohalm J, Subr V, Plocova D, Duncan R, Rihova B (1996) Polymeric conjugates of drugs and antibodies for site-specific drug delivery. Macromol Symp 103:177–192Google Scholar
  66. Uludag H, Norrie B, Kousinioris N, Gao T (2001) Engineering temperature-sensitive poly(N-isopropylacrylamide) polymers as carriers of therapeutic proteins. Biotechnol Bioeng 73:510–521CrossRefGoogle Scholar
  67. van Hest JCM, Tirrell DA (2001) Protein-based materials, toward a new level of structural control. Chem Commun (Camb) (19):1897–1904CrossRefGoogle Scholar
  68. Velonia K, Rowan AE, Nolte RJM (2002) Lipase polystyrene giant amphiphiles. J Am Chem Soc 124:4224–4225CrossRefGoogle Scholar
  69. Velonia K, Thordarson P, Andres PR, Schubert US, Rowan AE, Nolte RJM (2003) Polymer-protein giant amphiphiles by metal-to-ligand coordination. Polymer Preprints 44:648Google Scholar
  70. Velonia K, Thordarson P, Schubert US, Rowan AE, Nolte RJM (2004) Bio-hybrid giant amphiphiles by metal-to-ligand coordination. Polymer Preprints 45:401–402Google Scholar
  71. Velonia K, Cornelissen JJLM, Feiters MC, Rowan AE, Nolte RJM (2005) Aggregation of amphiphiles as a tool to create novel functional nano-objects. In: Huck WTS (ed) Nanostructure assemblies. Academic, New YorkGoogle Scholar
  72. Veronese FM (2001) Peptide and protein PEGylation: a review of problems and solutions. Biomaterials 22:405–417CrossRefGoogle Scholar
  73. Veronese FM, Pasut G (2005) PEGylation, successful approach to drug delivery. Drug Discov Today 10:1451–1458CrossRefGoogle Scholar
  74. Vriezema DM, Aragonès MC, Elemans JAAW, Cornelissen JJLM, Rowan AE, Nolte RJM (2005) Self-assembled nanoreactors. Chem Rev 105:1445–1489CrossRefGoogle Scholar
  75. Wang L, Schultz PG (2005) Expanding the genetic code. Angew Chem Int Ed Engl 44:34–66CrossRefGoogle Scholar
  76. Wang Y-S, Youngster S, Grace M, Bausch J, Bordens R, Wyss DF (2002) Structural and biological characterization of PEGylated recombinant interferon alpha-2b and its therapeutic implications. Adv Drug Deliv Rev 54:547–570CrossRefGoogle Scholar
  77. Wetzel R, Halualani R, Stults JT, Quan C (1990) A general method for highly selective cross-linking of unprotected polypeptides via pH-controlled modification of N-terminal α-amino groups. Bioconjug Chem 1:114–122CrossRefGoogle Scholar
  78. Yamamoto Y, Tsutsumi Y, Yoshioka Y, Nishibata T, Kobayashi K, Okamoto T, Mukai Y, Shimizu T, Nakagawa S, Nagata S, Mayumi T (2003) Site-specific PEGylation of a lysine-deficient TNF-alpha with full bioactivity. Nat Biotechnol 21:546–552CrossRefGoogle Scholar
  79. Yang K, Basu A, Wang M, Chintala R, Hsieh M-C, Liu S, Hua J, Zhang Z, Zhou J, Li M, Phyu H, Petti G, Mendez M, Janjua H, Peng P, Longley C, Borowski V, Mehlig M, Filpula D (2003) Tailoring structure-function and pharmacokinetic properties of single-chain Fv proteins by site-specific PEGylation. Protein Eng 16:761–770CrossRefGoogle Scholar
  80. Youngster S, Wang YS, Grace M, Bausch J, Bordens R, Wyss DF (2002) Structure, biology, and therapeutic implications of pegylated Interferon alpha-2b. Curr Pharm Des 8:2139–2157CrossRefGoogle Scholar
  81. Zhang S (2003) Fabrication of novel biomaterials through molecular self-assembly. Nat Biotechnol 21:1171–1178CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Pall Thordarson
    • 1
  • Benjamin Le Droumaguet
    • 2
  • Kelly Velonia
    • 2
    Email author
  1. 1.School of ChemistryThe University of SydneySydneyAustralia
  2. 2.Department of Organic ChemistryUniversity of Geneva, Sciences IIGeneva 4Switzerland

Personalised recommendations