Advertisement

Applied Microbiology and Biotechnology

, Volume 72, Issue 3, pp 421–429 | Cite as

Variations in the energy metabolism of biotechnologically relevant heterofermentative lactic acid bacteria during growth on sugars and organic acids

  • T. Zaunmüller
  • M. Eichert
  • H. Richter
  • G. Unden
Mini-Review

Abstract

Heterofermentative lactic acid bacteria (LAB) such as Leuconostoc, Oenococcus, and Lactobacillus strains ferment pentoses by the phosphoketolase pathway. The extra NAD(P)H, which is produced during growth on hexoses, is transferred to acetyl-CoA, yielding ethanol. Ethanol fermentation represents the limiting step in hexose fermentation, therefore, part of the extra NAD(P)H is used to produce erythritol and glycerol. Fructose, pyruvate, citrate, and O2 can be used in addition as external electron acceptors for NAD(P)H reoxidation. Use of the external acceptors increases the growth rate of the bacteria. The bacteria are also able to ferment organic acids like malate, pyruvate, and citrate. Malolactic fermentation generates a proton potential by substrate transport. Pyruvate fermentation sustains growth by pyruvate disproportionation involving pyruvate dehydrogenase. Citrate is fermented in the presence of an additional electron donor to acetate and lactate. Thus, heterofermentative LAB are able to use a variety of unusual fermentation reactions in addition to classical heterofermentation. Most of the reactions are significant for food biotechnology/microbiology.

Keywords

Sugar fermentation Lactic acid bacteria Heterofermentative Organic acids 

Notes

Acknowledgement

The work in the authors’ laboratory was supported by Innovationsstiftung Rheinland-Pfalz (Grant no. 15202-38 62 61/675).

References

  1. Amachi T, Imamoto S, Yoshizumi H, Senoh S (1970) Structure and synthesis of a novel pantothenic acid derivative, the microbial growth factor from tomato juice. Tetrahedron Lett 56:4871–4874CrossRefGoogle Scholar
  2. Arena ME, Mance De Nadra MC, Munoz R (2002) The arginine deiminase pathway in the wine lactic acid bacterium Lactobacillus hilgardii X1B: structural and functional study of the arcABC genes. Gene 301:61–66CrossRefGoogle Scholar
  3. Bartowsky FJ, Henschke PA (2004) The ‘buttery’ attribute of wine-diacetyl—desirability, spoilage and beyond. Int J Food Microbiol 96:235–252CrossRefGoogle Scholar
  4. Brüggemann H, Henne A, Hoster F, Liesegang H, Wiezer A, Strittmatter A, Hujer S, Dürre P, Gottschalk G (2004) The complete genome sequence of Propionibacterium acnes, a commensal of human skin. Science 305:671–673CrossRefGoogle Scholar
  5. Caplice E, Fitzgerald GF (1999) Food fermentations: role of microorganisms in food production and preservation. Int J Food Microbiol 50:131–149CrossRefGoogle Scholar
  6. Cerning J (1990) Exocellular polysaccharides produced by lactic acid bacteria. FEMS Microbiol Rev 7:113–130Google Scholar
  7. Coucheney F, Desroche N, Bou M, Tourdot-Marechal R, Dulau L, Guzzo J (2005) A new approach for selection of Oenococcus oeni strains in order to produce malolactic starters. Int J Food Microbiol 105:463–470CrossRefGoogle Scholar
  8. De Angelis M, Mariotti L, Rossi J, Servili M, Fox PF, Rollan G, Gobbetti M (2002) Arginine catabolism by sourdough lactic acid bacteria: purification and characterization of the arginine deiminase pathway enzymes from Lactobacillus sanfranciscensis GB1. Appl Environ Microbiol 68:6193–6201CrossRefGoogle Scholar
  9. Drinan DF, Tobin S, Cogan TM (1976) Citric acid metabolism in hetero- and homofermentative lactic acid bacteria. Appl Environ Microbiol 31:481–486Google Scholar
  10. Garrigues C, Loubiere P, Lindley ND, Cocaign-Bousquet M (1997) Control of the shift from homolactic acid to mixed-acid fermentation in Lactococcus lactis: predominant role of the NADH/NAD+ ratio. J Bacteriol 179:5282–5287Google Scholar
  11. Garrigues C, Mercade M, Cocaign-Bousquet M, Linley ND, Loubiere P (2001) Regulation of pyruvate metabolism in Lactococcus lactis depends on the imbalance between catabolism and anabolism. Biotechnol Bioeng 74:108–115CrossRefGoogle Scholar
  12. Garvie EI (1967) The growth factor and amino acid requirements of species of the genus Leuconostoc, including Leuconostoc paramesenteroides (sp. nov.) and Leuconostoc oenos. J Gen Microbiol 48:439–447Google Scholar
  13. Gaspar P, Neves AR, Ramos A, Gasson MJ, Shearman CA, Santos H (2004) Engineering Lactococcus lactis for production of mannitol: high yields from food-grade strains deficient in lactate dehydrogenase and the mannitol transport system. Appl Environ Microbiol 70:1466–1474CrossRefGoogle Scholar
  14. Hache C, Cachon R, Wache Y, Belguendoouz T, Riondet C, Deraedt A, Divies C (1999) Influence of lactose-citrate co-metabolism on the differences of growth and energetics in Leuconostoc lactis, Leuconostoc mesenteroides spp. mesenteroides and Leuconostoc mesenteroides ssp. cremoris. Syst Appl Microbiol 22:507–513Google Scholar
  15. Hahn G, Kaup B, Bringer-Meyer S, Sahm H (2003) A zinc-containing mannitol-2-dehydrogenase from Leuconostoc pseudomesenteroides ATCC 12291: purification of the enzyme and cloning the gene. Arch Microbiol 179:101–10. http://www.jgi.doe.gov/ Google Scholar
  16. Kaup B, Bringer-Meyer S, Sahm H (2003) Metabolic engineering of Escherichia coli: construction of an efficient biocatalyst for D-mannitol formation in a whole-cell biotransformation. Appl Microbiol Biotechnol 64:333–339CrossRefGoogle Scholar
  17. Konings WN (2002) The cell membrane and the struggle for life of lactic acid bacteria. Antoine Van Leeuwenhoek 82:3–27CrossRefGoogle Scholar
  18. Liu SQ (2002) A review: malolactic fermentation in wine-beyond deacidification. J Appl Microbiol 92:589–601CrossRefGoogle Scholar
  19. Lolkema JS, Poolman B, Konings WN (1995) Role of scalar protons in metabolic energy generation in lactic acid bacteria. J Bioenerg Biomembr 27:467–473CrossRefGoogle Scholar
  20. Lonvaud-Funel A (1999) Lactic acid bacteria in the quality improvement and depreciation of wine. Antonie Van Leeuwenhoek 76:317–331CrossRefGoogle Scholar
  21. Koo OK, Jeong DW, Lee JM, Kim MJ, Lee JH, Chang HC, Kim JH, Lee HJ (2005) Cloning and characterization of the bifunctional alcohol/acetaldehyde dehydrogenase gene (adhE) in Leuconostoc mesenteroides isolated from kimchi. Biotechnol Lett 27:505–510CrossRefGoogle Scholar
  22. Maicas S, Ferrer S, Pardo I (2002) NAD(P)H regeneration is the key for heterolactic fermentation of hexoses in Oenococcus oeni. Microbiology 148:325–332Google Scholar
  23. Martin M, Magni C, Lopez P, de Mendoza D (2000) Transcriptional control of the citrate-inducible citMCDEFGRP operon, encoding genes involved in citrate fermentation in Leuconostoc paramesenteroides. J Bacteriol 182:3904–3912CrossRefGoogle Scholar
  24. Marty-Teysset C, Lolkema JS, Schmitt P, Divies C, Konings WN (1995) Membrane potential-generating transport of citrate and malate catalyzed by CitP of Leuconostoc mesenteroides. J Biol Chem 270:25370–25376CrossRefGoogle Scholar
  25. Marty-Teysset C, Posthuma C, Lolkema JS, Schmitt P, Divies C, Konings WN (1996) Proton motive force generation by citrolactic fermentation in Leuconostoc mesenteroides. J Bacteriol 178:2178–2185Google Scholar
  26. Medina de Figueroa R, Alvarez F, Pesce de Ruiz Holgado A, Oliver G, Sesma F (2000) Citrate utilization by homo- and heterofermentative lactobacilli. Microbiol Res 154:313–320Google Scholar
  27. Meile L, Rohr LM, Geissmann TA, Herenberger M, Teuber M (2001) Characterization of the D-xylulose 5-phosphate/D-fructose 6-phosphoketolase gene (xfp) from Bifidobacterium lactis. J Bacteriol 183:2929–2936CrossRefGoogle Scholar
  28. Melchiorsen CR, Jokumsen KV, Villadsen J, Israelsen H, Arnau J (2002) The level of pyruvate–formate lyase controls the shift from homolactic to mixed-acid product formation in Lactococcus lactis. Appl Microbiol Biotechnol 58:338–344CrossRefGoogle Scholar
  29. Mills DA, Rawsthorne H, Parker C, Tamir D, Makarova K (2005) Genomic analysis of Oenococcus oeni PSU-1 and its relevance to winemaking. FEMS Microbiol Rev 29:465–475CrossRefGoogle Scholar
  30. Mira De Orduna R, Patchett ML, Liu SQ, Pilone GJ (2001) Growth and arginine metabolism of the wine lactic acid bacteria Lactobacillus buchneri and Oenococcus oeni at different pH values and arginine concentrations. Appl Environ Microbiol 67:1657–1662CrossRefGoogle Scholar
  31. Moreno-Arribas MV, Polo MC (2005) Winemaking biochemistry and microbiology: current knowledge and future trends. Crit Rev Food Sci Nutr 45:235–2552CrossRefGoogle Scholar
  32. Nielsen JC, Richelieu M (1999) Control of flavour development in wine during and after malolactic fermentation by Oenococcus oeni. Appl Environ Microbiol 65:740–745Google Scholar
  33. Nuraida L, Grigolava I, Owens JD, Campbell-Platt G (1992) Oxygen and pyruvate as external electron acceptors for Leuconostoc spp. J Appl Bacteriol 72:517–522Google Scholar
  34. Pilone GJ, Kunkee RE (1976) Stimulatory effect of malo-lactic fermentation on the growth rate of Leuconostoc oenos. Appl Environ Microbiol 32:405–408Google Scholar
  35. Poolman B, Molenaar D, Smid EJ, Ubbink T, Abee T, Renault PP, Konings WN (1991) Malolactic fermentation: electrogenic malate uptake and malate/lactate antiport generate metabolic energy. J Bacteriol 173:6030–6037Google Scholar
  36. Radler F (1958) Untersuchung des biologischen Säureabbaus im Wein. III. Die Energiequelle der Äpfelsäure-abbauenden Bakterien. Arch Mikrobiol 31:224–230CrossRefGoogle Scholar
  37. Radler F (1966) Die mikrobiologischen Grundlagen des Säureabbaus im Wein. Zentralbl Bakteriol Parasitenkd Infektionskr Hyg Abt II 120:237–287Google Scholar
  38. Radler F, Brohl K (1984) The metabolism of several carboxylic acids by lactic acid bacteria. Z Lebensm Unters Forsch 179:228–231CrossRefGoogle Scholar
  39. Ramos A, Poolman B, Santos H, Lolkema JS, Konings WN (1994) Uniport of anionic citrate and proton consumption in citrate metabolism generates a proton motive force in Leuconostoc oenos. J Bacteriol 176:4899–4905Google Scholar
  40. Randazzo CL, Heilig H, Restuccia C, Giudici P, Caggia C (2005) Bacterial population in traditional sourdough evaluated by molecular methods. J Appl Microbiol 99:251–258CrossRefGoogle Scholar
  41. Richter H, Vlad D, Unden G (2001) Significance of pantothenate for glucose fermentation by Oenococcus oeni and for suppression of the erythritol and acetate production. Arch Microbiol 175:26–31CrossRefGoogle Scholar
  42. Richter H, Hamann I, Unden G (2003a) Use of the mannitol pathway in fructose fermentation of Oenococcus oeni due to limiting redox regeneration capacity of the ethanol pathway. Arch Microbiol 179:227–233Google Scholar
  43. Richter H, De Graaf AA, Hamann I, Unden G (2003b) Significance of phosphoglucose isomerase for the shift between heterolactic and mannitol fermentation of fructose by Oenococcus oeni. Arch Microbiol 180:370–465CrossRefGoogle Scholar
  44. Rodas AM, Ferrer S, Pardo I (2005) Polyphasic study of wine Lactobacillus strains: taxonomic implications. Int J Syst Evol Microbiol 55:197–207CrossRefGoogle Scholar
  45. Ross RP, Morgan S, Hill C (2002) Preservation and fermentation: past, present and future. Int J Food Microbiol 79:3–16CrossRefGoogle Scholar
  46. Saguir FM, Manca de Nadra MC (2002) Effect of L-malic and citric acids metabolism on the essential amino acid requirements for Oenococcus oeni growth. J Appl Microbiol 93:295–301CrossRefGoogle Scholar
  47. Salema M, Lolkema JS, San Romao MV, Loureiro Dias MC (1996) The proton motive force generated in Leuconostoc oenos by L-malate fermentation. J Bacteriol 178:3127–3132Google Scholar
  48. Salou P, Loubiere P, Pareilleux A (1994) Growth and energetics of Leuconostoc oenos during cometabolism of glucose with citrate or fructose. Appl Environ Microbiol 60:1459–1466Google Scholar
  49. Sangari FJ, Aguero J, Garcia-Lobo JM (2000) The genes for erythritol catabolism are organized as an inducible operon in Brucella abortus. Microbiology 146:487–495Google Scholar
  50. Schmitt P, Vasseur C, Palip V, Huang DQ, Divies C, Prevost H (1997) Diacetyl and acetoin production from the co-metabolism of citrate and xylose by Leuconostoc mesenteroides subsp. mesenteroides. Appl Microbiol Biotechnol 47:715–718CrossRefGoogle Scholar
  51. Schneider K, Kastner CN, Meyer M, Wessel M, Dimroth P, Bott M (2002) Identification of a gene cluster in Klebsiella pneumoniae, which includes citX, a gene required for biosynthesis of the citrate lyase prosthetic group. J Bacteriol 184:2439–2446CrossRefGoogle Scholar
  52. Sedewitz B, Schleifer KH, Götz F (1984) Physiological role of pyruvate oxidase in the aerobic metabolism of Lactobacillus plantarum. J Bacteriol 160:462–465Google Scholar
  53. Sender PD, Martin MG, Peiru S, Magni C (2004) Characterization of an oxaloacetate decarboxylase that belongs to the malic enzyme family. FEBS Lett 570:17–22CrossRefGoogle Scholar
  54. Spano G, Chieppa G, Beneduce L, Massa S (2004) Expression and analysis of putative arcA, arcB and arcC genes partially cloned from Lactobacillus plantarum isolated from wine. J Appl Microbiol 96:185–193CrossRefGoogle Scholar
  55. Sperry JF, Robertson DC (1975) Erythritol catabolism by Brucella abortus. J Bacteriol 121:619–630Google Scholar
  56. Starrenburg MJ, Hugenholtz J (1991) Citrate fermentation by Lactococcus and Leuconostoc spp. Appl Environ Microbiol 57:3535–3540Google Scholar
  57. Steinkraus KH (1993) Lactic acid fermentation in the production of food from vegetables, cereals and legumes. Antonie Van Leeuwenhoek 49:337–348CrossRefGoogle Scholar
  58. Stolz P, Vogel RF, Hammes WP (1995) Utilization of electron acceptors by lactobacilli isolated from sour dough. Z Lebensm Unters Forsch 201:402–410CrossRefGoogle Scholar
  59. Tonon T, Lonvaud-Funel A (2000) Metabolism of arginine and its positive effect on growth and revival of Oenococcus oeni. J Appl Microbiol 89:526–531CrossRefGoogle Scholar
  60. Veiga-Da-Cunha M, Firme P, San Romao MV, Santos H (1992) Application of [13C] nuclear magnetic resonance to elucidate the unexpected biosynthesis of erythritol by Leuconostoc oenos. Appl Environ Microbiol 58:2271–2279Google Scholar
  61. Veiga-Da-Cunha M, Santos H, van Schaftingen E (1993) Pathway and regulation of erythritol formation in Leuconostoc oenos. J Bacteriol 175:3941–3948Google Scholar
  62. Wagner N, Tran QH, Richter H, Selzer PM, Unden G (2005) Pyruvate fermentation by Oenococcus oeni and Leuconostoc mesenteroides and role of pyruvate dehydrogenase in anaerobic fermentation. Appl Environ Microbiol 71:4966–4971CrossRefGoogle Scholar
  63. Yin X, Chambers JR, Barlow K, Park AS, Wheatcroft R (2005) The gene encoding xylulose-5-phosphate/fructose-6-phosphate phosphoketolase (xfp) is conserved among Bifidobacterium species within a more variable region on the genome and both are useful for strain identification. FEMS Microbiol Lett 246:251–257CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • T. Zaunmüller
    • 1
  • M. Eichert
    • 1
  • H. Richter
    • 1
  • G. Unden
    • 1
  1. 1.Institut für Mikrobiologie und WeinforschungJohannes Gutenberg-Universität MainzMainzGermany

Personalised recommendations