Advertisement

Applied Microbiology and Biotechnology

, Volume 73, Issue 3, pp 676–683 | Cite as

Lipids of Cunninghamella echinulata with emphasis to γ-linolenic acid distribution among lipid classes

  • Stylianos Fakas
  • Seraphim Papanikolaou
  • Maria Galiotou-Panayotou
  • Michael Komaitis
  • George AggelisEmail author
Applied Microbial and Cell Physiology

Abstract

Changes in lipid composition of the oleaginous fungus Cunninghamella echinulata were monitored during growth. Lipid fractions and individual lipid classes varied in amount, relative proportions, and fatty acid profile depending on the developmental stage. Neutral lipids (N), comprised mainly of triacylglycerol, were accumulated in the fungal mycelium during both the late exponential and the stationary growth phases with a concomitant decrease in the amount of polar lipids. While fatty acid composition of N fraction remained almost constant, individual N classes showed a noticeable alteration in γ-linolenic acid (GLA) concentration. The glycolipid plus sphingolipid (G+S) fraction consisted mainly of monoglycosylglycerol and diglycosylglycerol. The sugar composition of G+S fraction was analyzed and showed a partial replacement of galactose for glucose as growth proceeded. Phospholipid (P) major classes were phosphatidylcholine (PC) and phosphatidylethanolamine, followed by phosphatidylinositol, phosphatidylserine, and diphosphatidylglycerol. P fatty acid composition showed significant changes with time, resulting in a considerable drop in the unsaturation index of this fraction. While in mid exponential growth phase, all P classes contained more than 20% w/w GLA of total fatty acids, and their concentration decreased to 12–17% w/w, except for the PC class where GLA concentration remained at high levels (e.g., more than 20% w/w). The constant level of GLA in PC at all growth phases suggests that PC was the major source of GLA. Sterol analysis showed that their concentration increased during growth, whereas ergosterol was the major component.

Keywords

Microbial lipid GLA 

Notes

Acknowledgements

Financial support was provided by the bilateral project between Greece and Slovakia: “Biotechnological valorization of agro-industrial materials by application of oleaginous microorganisms producing biologically active lipids”. The Greek State Scholarship Foundation is acknowledged for the doctoral fellowship of Stylianos Fakas.

References

  1. AFNOR (1984) Recueil des normes francaises des corps gras, grains oléagineux et produits dérives. In: Association Française pour Normalisation. Paris, p 95Google Scholar
  2. Aggelis G, Pina M, Ratomahenina R, Arnaud A, Graille J, Galzy P, Martin P, Peraud J (1987) Production d’huiles riches en acide gamma linolénique par diverses souches de Phycomycètes. Oléagineux 42:379–386Google Scholar
  3. Aggelis G, Pina M, Graille J (1990) Localisation de l’acide gamma linolénique dans les mycélium et dans les spores chez deux mucorales. Oléagineux 45:229–232Google Scholar
  4. Aki T, Matsumoto Y, Morinaga T, Kawamoto S, Shigeta S, Ono K, Suzuki O (1998) Lipid composition of a newly isolated polyunsaturated fatty acid-producing fungus, Achlya sp. ma-2801. J Ferment Bioeng 86:504–507CrossRefGoogle Scholar
  5. Barrero AF, Enrique Oltra J, Robinson J, Burke PV, Jimenez D, Oliver E (2002) Sterols in erg mutants of Phycomyces: metabolic pathways and physiological effects. Steroids 67:403–409CrossRefGoogle Scholar
  6. Bartlett K, Mercer EI (1974) Variation in the levels and composition of the sterols and sterol esters of Phycomyces blakesleeanus with age of culture. Phytochemistry 13:1115–1121CrossRefGoogle Scholar
  7. Batrakov S, Konova I, Sheichenko V, Esipov S, Galanina L, Istratova L, Sergeeva Y (2004) Lipids of the zygomycete Absidia corymbifera F-965. Phytochemistry 65:1239–1246CrossRefGoogle Scholar
  8. Certik M, Shimizu S (1999) Biosynthesis and regulation of microbial polyunsaturated fatty acid production. J Biosci Bioeng 87:1–14CrossRefGoogle Scholar
  9. Certik M, Shimizu S (2000) Kinetic analysis of oil biosynthesis by an arachidonic acid-producing fungus, Mortierella alpina 1S-4. Appl Microbiol Biotechnol 54:224–230CrossRefGoogle Scholar
  10. Certik M, Shimizu S (2003) Isolation and lipid analyses of subcellular fractions from the arachidonic acid producing fungus Mortierella alpina. Biologia (Bratisl) 58:1101–1110Google Scholar
  11. Chen H, Chang C (1996) Production of γ-linolenic acid by the fungus Cunninghamella echinulata CCRC 31840. Biotechnol Prog 12:338–341CrossRefGoogle Scholar
  12. Chen H, Liu T (1997) Inoculum effects on the production of γ-linolenic acid by the shake culture of Cunninghamella echinulata CCRC 31840. Enzyme Microb Technol 21:137–141CrossRefGoogle Scholar
  13. Folch J, Lees M, Sloane-Stanley G (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 199:833–841Google Scholar
  14. Gema H, Kavadia A, Dimou D, Tsagou V, Komaitis M, Aggelis G (2002) Production of γ-linolenic acid by Cunninghamella echinulata cultivated on glucose and orange peel. Appl Microbiol Biotechnol 58:303–307CrossRefGoogle Scholar
  15. Henderson J, Tocher D (1992) Thin-layer chromatography. In: Hamilton R, Hamilton S (eds) Lipid analysis. IRL Press, Oxford, pp 65–111Google Scholar
  16. Horrobin DF (1992) Nutritional and medical importance of gamma-linolenic acid. Prog Lipid Res 31:163–194CrossRefGoogle Scholar
  17. Kavadia A, Komaitis M, Chevalot I, Blanchard F, Marc I, Aggelis G (2001) Lipid and γ-linolenic acid accumulation in strains of Zygomycetes growing on glucose. J Am Oil Chem Soc 78:341–346Google Scholar
  18. Kenny F, Pinder S, Ellis I, Gee J, Nicholson R, Bryce R, Robertson J (2000) Gamma linolenic acid with tamoxifen as primary therapy in breast cancer. Int J Cancer 85:643–648CrossRefGoogle Scholar
  19. Latge J, De Bievre C (1980) Lipid composition of Entomophthora obscura Hall & Dunn. J Gen Microbiol 121:151–158Google Scholar
  20. Loeffler RST, Hayes AL (1990) Sterols of the plant pathogenic fungi Botrytis cinerea and Pyrenophora teres. Phytochemistry 29:3423–3425CrossRefGoogle Scholar
  21. Losel D (1989a) Fungal lipids. In: Ratledge C, Wilkinson SG (eds) Microbial lipids, vol 1. Academic, London, pp 699–794Google Scholar
  22. Losel D (1989b) Functions of lipids: specialized roles in fungi and algae. In: Ratledge C, Wilkinson SG (eds) Microbial lipids, vol 2. Academic, London, pp 367–438Google Scholar
  23. Mercer EI, Bartlett K (1974) Sterol esters of Phycomyces blakesleeanus. Phytochemistry 13:1099–1105CrossRefGoogle Scholar
  24. Mills G, Cantino E (1974) Lipid composition of the zoospores of Blastocladiella emersonii. J Bacteriol 118:192–201Google Scholar
  25. Mlickova K, Roux E, Athenstaedt K, d’Andrea S, Daum G, Chardot T, Nicaud J (2004) Lipid accumulation, lipid body formation, and acyl coenzyme A oxidases of the yeast Yarrowia lipolytica. Appl Environ Microbiol 70:3918–3924CrossRefGoogle Scholar
  26. Mysyakina IS, Funtikova NS, Medvedev FA (2002) Sterol composition of the arthrospores and mycelium of the fungus Mucor hiemalis. Microbiology (Moscow) 71:404–409Google Scholar
  27. Nes WD, Xu S, Haddon WF (1989) Evidence for similarities and differences in the biosynthesis of fungal sterols. Steroids 53:533–558CrossRefGoogle Scholar
  28. Papanikolaou S, Aggelis G (2002) Lipid production by Yarrowia lipolytica growing on industrial glycerol in a single-stage continuous culture. Bioresour Technol 82:43–49CrossRefGoogle Scholar
  29. Papanikolaou S, Chevalot I, Komaitis M, Marc I, Aggelis G (2002) Single cell oil production by Yarrowia lipolytica growing on an industrial derivative of animal fat in batch cultures. Appl Microbiol Biotechnol 58:308–312CrossRefGoogle Scholar
  30. Papanikolaou S, Muniglia L, Chevalot I, Aggelis G, Marc I (2003) Accumulation of a cocoa-butter-like lipid by Yarrowia lipolytica cultivated on agro-industrial residues. Curr Microbiol 46:124–1304CrossRefGoogle Scholar
  31. Ratledge C, Wynn J (2002) The biochemistry and molecular biology of lipid accumulation in oleaginous microorganisms. Adv Appl Microbiol 51:1–51CrossRefGoogle Scholar
  32. Sajbidor J, Certík M, Grego J (1994) Lipid analysis of baker’s yeast. J Chromatogr 665:191–195CrossRefGoogle Scholar
  33. Safe S (1973) The effect of environment on the free and hydrosoluble sterols of Mucor rouxii. Biochim Biophys Acta 326:471–475Google Scholar
  34. Vaskovsky VE, Latyshev NA (1975) Modified Jungnickel’s reagent for detecting phospholipids and other phosphorus compounds on thin-layer chromatograms. J Chromatogr 115:246–249CrossRefGoogle Scholar
  35. Volkman (2003) Sterols in microorganisms. Appl Microbiol Biotechnol 60:495–506Google Scholar
  36. Waltermann M, Steinbuchel A (2005) Neutral lipid bodies in prokaryotes: recent insights into structure, formation and relationship to eukaryotic lipid depots. J Bacteriol 187:3607–3619CrossRefGoogle Scholar
  37. Weete J, Gandhi S (1997) Sterols of the Phylum Zygomycota:Phylogenetic implications. Lipids 32:1309–1316CrossRefGoogle Scholar
  38. Weete J, Shewmaker F, Gandhi S (1998) γ-Linolenic acid in zygomycetous fungi: Syzygites megalocarpus. J Am Oil Chem Soc 75:1367–1372Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Stylianos Fakas
    • 1
  • Seraphim Papanikolaou
    • 1
  • Maria Galiotou-Panayotou
    • 1
  • Michael Komaitis
    • 2
  • George Aggelis
    • 3
    Email author
  1. 1.Laboratory of Food Microbiology and Biotechnology, Department of Food Science and TechnologyAgricultural University of AthensAthensGreece
  2. 2.Laboratory of Food Chemistry, Department of Food Science and TechnologyAgricultural University of AthensAthensGreece
  3. 3.Department of Biology, Division of Genetics, Cell and Development BiologyUniversity of PatrasPatrasGreece

Personalised recommendations