Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Enzymes and genes involved in the aerobic biodegradation of methyl tert-butyl ether (MTBE)

  • 482 Accesses

  • 51 Citations

Abstract

Fuel oxygenates, mainly methyl tert-butyl ether (MTBE) but also ethyl tert-butyl ether (ETBE), are added to gasoline in replacement of lead tetraethyl to enhance its octane index. Their addition also improves the combustion efficiency and therefore decreases the emission of pollutants (CO and hydrocarbons). On the other hand, MTBE, being highly soluble in water and recalcitrant to biodegradation, is a major pollutant of water in aquifers contaminated by MTBE-supplemented gasoline during accidental release. MTBE was shown to be degraded through cometabolic oxidation or to be used as a carbon and energy source by a few microorganisms. We have summarized the present state of knowledge about the microorganisms involved in MTBE degradation and the MTBE catabolic pathways. The role of the different enzymes is discussed as well as the rare and recent data concerning the genes encoding the enzymes involved in the MTBE pathway. The phylogeny of the microorganisms isolated for their capacity to grow on MTBE is also described.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Aramaki H, Sagara Y, Hosoi M, Horiuchi T (1993) Evidence for autoregulation of camR, which encodes a repressor for the cytochrome P-450cam hydroxylase operon on the Pseudomonas putida CAM plasmid. J Bacteriol 175:7828–7833

  2. Baptist JN, Gholson RK, Coon MJ (1963) Hydrocarbon oxidation by a bacterial enzyme system. I. Products of octane oxidation. Biochim Biophys Acta 69:40–47

  3. Béguin P, Chauvaux S, Miras I, François A, Fayolle F, Monot F (2003) Genes involved in the degradation of ether fuels by bacteria of the MycobacteriumRhodococcus complex. Oil Gas Sci Technol 58:489–497

  4. Chauvaux S, Chevalier F, Le Dantec C, Fayolle F, Miras I, Kunst F, Béguin P (2001) Cloning of a genetically unstable cytochrome P-450 gene cluster involved in degradation of the pollutant ethyl tert-butyl ether by Rhodococcusruber. J Bacteriol 183:6551–6557

  5. Chen Q, Janssen DB, Witholt B (1996) Physiological changes and alk gene instability in Pseudomonas oleovorans during induction and expression of alk genes. J Bacteriol 178:5508–5512

  6. Deeb RA, Nishino S, Spain J, Hu H-Y, Scow K, Alvarez-Cohen L (2000) MTBE and benzene biodegradation by a bacterial isolate via two independent monooxygenase-initiated pathways. Preprints of extended abstracts, ACS national meeting. AM Chem Soc Div Environ Chem 40: 280–282

  7. Deeb RA, Hu HY, Hanson JR, Scow KM, Alvarez-Cohen L (2001) Substrate interactions in BTEX and MTBE mixtures by an MTBE-degrading isolate. Environ Sci Technol 35:312–317

  8. Eggink G, van Lelyveld PH, Arnberg A, Arfman N, Witteveen C, Witholt B (1987) Structure of the Pseudomonas putida alkBAC. Identification of transcription and translation products. J Biol Chem 262:6400–6406

  9. Eggink G, Engel H, Meijer WG, Otten J, Kingma J, Witholt B (1988) Alkane utilization in Pseudomonas oleovorans: structure and function of the regulatory locus alkR. J Biol Chem 263:13400–13405

  10. Fayolle F, Monot F (2005) Biodegradation of fuel ethers. In: Magot M, Ollivier B (eds) Petroleum microbiology. ASM, Washington, DC, USA, pp 301–316

  11. Fayolle F, François A, Garnier L, Godefroy D, Mathis H, Piveteau P, Monot F (2003) Limitations in MTBE biodegradation. Oil Gas Sci Technol 58:497–504

  12. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

  13. Fortin N, Morales M, Nakagawa Y, Focht DD, Deshusses MA (2001) Methyl tert-butyl ether (MTBE) degradation by a microbial consortia. Environ Microbiol 3:407–416

  14. François A, Mathis H, Godefroy D, Piveteau P, Fayolle F, Monot F (2002) Biodegradation of methyl tert-butyl ether and other fuel oxygenates by a new strain, Mycobacteriumaustroafricanum IFP 2012. Appl Environ Microbiol 68:2754–2762

  15. François A, Garnier L, Mathis H, Fayolle F, Monot F (2003) Roles of tert-butyl formate, tert-butyl alcohol and acetone in the regulation of methyl tert-butyl ether degradation by Mycobacterium austroafricanum IFP 2012. Appl Microbiol Biotechnol 62:256–262

  16. Galkin A, Kulakova L, Tishkov V, Esaki N, Soda K (1995) Cloning of formate dehydrogenase gene from a methanol-utilizing bacterium Mycobacterium vaccae N10. Appl Microbiol Biotechnol 44:479–483

  17. Goodfellow M, Jones LJ, Maldonado LA, Salanitro J (2004) Rhodococcus aetherivorans sp. nov., a new species that contains methyl t-butyl ether-degrading actinomycetes. Syst Appl Microbiol 27:61–65

  18. Hanson JR, Ackerman CE, Scow KM (1999) Biodegradation of methyl tert-butyl ether by a bacterial pure culture. Appl Environ Microbiol 65:4788–4792

  19. Hatzinger PB, Mc Clay K, Vainberg S, Tugusheva M, Condee CW, Steffan RJ (2001) Biodegradation of methyl tert-butyl ether by a pure bacterial culture. Appl Environ Microbiol 67:5601–5607

  20. Hernandez-Perez G, Fayolle F, Vandecasteele JP (2001) Biodegradation of ethyl t-butyl ether (ETBE), methyl t-butyl ether (MTBE) and t-amyl methyl ether (TAME) by Gordoniaterrae. Appl Microbiol Biotechnol 55:117–121

  21. Hristova K, Gebreyesus B, Mackay D, Scow KM (2003) Naturally occurring bacteria similar to the methyl tert-butyl ether (MTBE)-degrading strain PM1 are present in MTBE-contaminated groundwater. Appl Environ Microbiol 69:2616–2623

  22. Hyman M, O’Reilly K (1999) Physiological and enzymatic features of MTBE-degrading bacteria. In: Alleman BC, Leeson A (eds) In situ bioremediation of petroleum hydrocarbons and other organic compounds. Battelle, Columbus, Ohio, pp 7–12

  23. Hyman M, Glover K, House A, Johnson E, Smith C (2004) Physiological and enzymatic diversity of aerobic MTBE biodegradation processes. In: Barcelo D, Petrovic M (eds) Proceedings of the second European conference on MTBE. C.S.I.C., Barcelona, Spain, pp 39–43

  24. Johnson EL, Hyman MR (2006) Propane and n-butane oxidation by Pseudomonas putida GPo1. Appl Environ Microbiol 72:950–952

  25. Johnson R, Pankow J, Bender D, Price C, Zogorsky J (2000) MTBE. To what extent will past releases contaminate community water supply wells? Environ Sci Technol 34:210A–217A

  26. Johnson EL, Smith CA, O’Reilly KT, Hyman MR (2004) Induction of methyl tert-butyl ether (MTBE)-oxidizing activity in Mycobacteriumvaccae JOB5. Appl Environ Microbiol 70:1023–1030

  27. Liu CY, Speitel GE, Georgiou G (2001) Kinetics of methyl t-butyl ether cometabolism at low concentrations by pure cultures of butane-degrading bacteria. Appl Environ Microbiol 67:2197–2201

  28. Lopes Ferreira N, Labbé D, Monot F, Fayolle-Guichard F, Greer CW (2006a) Genes involved in the methyl tert-butyl ether (MTBE) metabolic pathway of Mycobacterium austroafricanum IFP 2012. Microbiology 152:1361–1374

  29. Lopes Ferreira N, Maciel H, Mathis H, Monot F, Fayolle-Guichard F, Greer CW (2006b) Isolation of a new Mycobacterium austroafricanum, IFP 2015, growing on MTBE. Appl Microbiol Biotechnol 70:358–365

  30. Nagy I, Scoofs G, Compernolle F, Proost P, Vanderleyden J, De Mot R (1995) Degradation of the thiocarbamate herbicide EPTC S-ethyldipropylcarbamothioate) and biosafing by Rhodococcus sp. strain NI86/21 involve an inducible cytochrome P-450 system and aldehyde dehydrogenase. J Bacteriol 177:676–687

  31. Nakatsu CH, Hrsitova K, Hanada S, Meng X-Y, Hanson J, Scow KM, Kagamata Y (2006) Methylibium petroleiphilum PM1T gen. nov., sp. nov., a new methyl tert-butyl ether (MTBE) degrading methylotroph of the beta-Proteobacteria. Int J Syst Evol Microbiol (DOI 10.1099/ijs.0.63524-0)

  32. Ooyama J, Foster JW (1965) Bacterial oxidation of cycloparaffinic hydrocarbons. Antonie van Leeuwenhoek 31:45–65

  33. Park SW, Hwang EH, Park H, Kim JA, Heo J, Lee KH, Song T, Kim E, Ro YT, Kim SW, Kim YM (2003) Growth of mycobacteria on carbon monoxide and methanol. J Bacteriol 185:142–147

  34. Piveteau P, Fayolle F, Vandecasteele JP, Monot F (2001) Biodegradation of tert-butyl alcohol and related xenobiotics by a methylotrophic bacterial isolate. Appl Microbiol Biotechnol 55:369–373

  35. Poulos TL, Finzel BC, Gunsalus IC, Wagner GC, Kraut J (1985) The 2.6-A crystal structure of Pseudomonas putida cytochrome P-450. J Biol Chem 30:16122–16130

  36. Pruden A, Suidan M (2004) Effect of benzene, toluene, ethylbenzene and p-xylene (BTEX) mixture on biodegradation of methyl tert-butyl ether (MTBE) and tert-butyl alcohol by pure culture UC1. Biodegradation 15:213–227

  37. Rohwerder T, Cenini V, Held C, Martienssen M, Lechner U, Müller RH (2004) Novel MTBE-degrading bacterial isolate from Leuna groundwater (Germany): characterization of the degradation pathway with focus on HIBA oxidase. In: Barcelo D, Petrovic M (eds) Proceedings of the second European conference on MTBE. C.S.I.C., Barcelona, Spain, pp 47–50

  38. Rohwerder T, Breuer U, Benndorf D, Lechner U, Müller RH (2006) The alkyl tertiary butyl ether intermediate 2-hydroxyisobutyrate is degraded via a novel cobalamin-dependent mutase pathway. Appl Environ Microbiol. DOI 10.1128/AEM.00080-06

  39. Saitou N, Nei M (1987) The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

  40. Salanitro JP (1995) Understanding the limitations of microbial metabolism of ethers used as fuel octane enhancers. Curr Opin Biotechnol 6:337–340

  41. Salanitro JP, Diaz LA, Williams MP, Wisniewski HL (1994) Isolation of a bacterial culture that degrades methyl t-butyl ether. Appl Environ Microbiol 60:2593–2596

  42. Smith CA, Hyman MR (2004) Oxidation of methyl tert-butyl ether by propane-grown Pseudomonas putida GPo1. Appl Environ Microbiol 70:4544–4550

  43. Smith CA, O’Reilly KT, Hyman MR (2003a) Characterization of the initial reactions during the cometabolic oxidation of methyl tert-butyl ether by propane-grown Mycobacteriumvaccae JOB5. Appl Environ Microbiol 69:796–804

  44. Smith CA, O’Reilly KT, Hyman MR (2003b) Cometabolism of methyl tert-butyl ether and gaseous n-alkanes by Pseudomonas mendocina KR-1 grown on C5 to C8n-alkanes. Appl Environ Microbiol 69:7385–7394

  45. Steffan RJ, McClay K, Vainberg S, Condee CW, Zhang D (1997) Biodegradation of the gasoline oxygenates methyl tert-butyl ether, ethyl tert-butyl ether, and tert-amyl methyl ether by propane-oxidizing bacteria. Appl Environ Microbiol 63:4216–4222

  46. Steffan RJ, Vainberg S, Condee CW, McClay K, Hatzinger PB (2000) Biotreatment of MTBE with a new bacterial isolate. In: Wickramanayake GB, Gavaskar AR, Alleman BC, Magar VS (eds) Bioremediation and phytoremediation of chlorinated and recalcitrant compounds. Battelle, Columbus, Ohio, pp 165–173

  47. Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526

  48. Unger BP, Gunsalus IC, Sligar SG (1986) Nucleotide sequence of the Pseudomonas putida P-450cam gene and its expression in Escherichia coli. J Biol Chem 261:1158–1163

  49. Urios A, Fayolle F, Monot F, Chauvaux S, Béguin P (2002) Physiological comparison of an ETBE (MTBE)-degrading strain and some derived mutants. In: Gavaskar AR, Chen ASC (eds) Remediation of chlorinated and recalcitrant compounds—2002. ISBN 1-57477-132-9. Battelle, Columbus, Ohio. http://www.battelle.org/bookstore

  50. Van Beilen JB, Wubbolts MG, Witholt B (1994) Genetics of alkane oxidation by Pseudomonas oleovorans. Biodegradation 5:161–174

  51. Van Beilen JB, Smits THM, Roos FF, Brunner T, Balada SB, Röthlisberger M, Witholt B (2005) Identification of an amino acid position that determines the substrate range of integral membrane alkane hydroxylase. J Bacteriol 187:85–91

  52. Wilson JT (2003) Fate and transport of MTBE and other gasoline components. In: Moyer EE, Kostecki PT (eds) MTBE remediation handbook. Amherst Scientific, Amherst, MA, USA, pp 19–61

Download references

Acknowledgements

Nicolas Lopes Ferreira and Cédric Malandain were supported by a Convention Industrielle de Formation par la Recherche (C.I.F.R.E.) fellowship provided by both the Institut Français du Pétrole (I.F.P.) and the Association Nationale de la Recherche Technique (A.N.R.T.). We thank Charles W. Greer for numerous helpful suggestions and discussions. We thank Diane Labbé (BRI, Montréal) for her help in building the phylogenetic tree. We thank Robert Steffan, Paul Hatzinger, and Simon Vainberg (Shaw Group) for communicating the 16S rDNA sequences of strains ENV735, ENV736, and ENV472. We thank Thore Rohwerder for the early communication of his manuscript in press. We are really grateful to Pierre Béguin (Pasteur Institute) and Frédéric Monot (IFP) for their comments and corrections on the manuscript.

Author information

Correspondence to Françoise Fayolle-Guichard.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lopes Ferreira, N., Malandain, C. & Fayolle-Guichard, F. Enzymes and genes involved in the aerobic biodegradation of methyl tert-butyl ether (MTBE). Appl Microbiol Biotechnol 72, 252–262 (2006). https://doi.org/10.1007/s00253-006-0494-3

Download citation

Keywords

  • MTBE
  • ETBE
  • Alkane Hydroxylase
  • MTBE Degradation
  • Rhodococcus Ruber