Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Biodegradability and biodegradation of poly(lactide)

Abstract

Poly(lactide) (PLA) has been developed and made commercially available in recent years. One of the major tasks to be taken before the widespread application of PLA is the fundamental understanding of its biodegradation mechanisms. This paper provides a short overview on the biodegradability and biodegradation of PLA. Emphasis is focused mainly on microbial and enzymatic degradation. Most of the PLA-degrading microorganisms phylogenetically belong to the family of Pseudonocardiaceae and related genera such as Amycolatopsis, Lentzea, Kibdelosporangium, Streptoalloteichus, and Saccharothrix. Several proteinous materials such as silk fibroin, elastin, gelatin, and some peptides and amino acids were found to stimulate the production of enzymes from PLA-degrading microorganisms. In addition to proteinase K from Tritirachium album, subtilisin, a microbial serine protease and some mammalian serine proteases such as α-chymotrypsin, trypsin, and elastase could also degrade PLA.

This is a preview of subscription content, log in to check access.

Fig. 1

References

  1. Anderson AJ, Dawes EA (1990) Occurrence, metabolism, metabolic rule, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol Rev 54:450–472

  2. Cai H, Dave V, Gross RA, McCarthy SP (1996) Effects of physical aging, crystallinity, and orientation on the enzymatic degradation of poly(lactic acid). J Polym Sci B Polym Phys 34:2701–2708

  3. Doi Y (1990) Microbial polyesters. VCH, New York

  4. Fukuzaki H, Yoshida M, Asano M, Kumakura M (1989) Synthesis of copoly(d,l-Lactic acid) with relatively low molecular weight and in vitro degradation. Eur Polym J 25:1019–1026

  5. Ikura Y, Kudo T (1999) Isolation of a microorganism capable of degrading poly(l-lactide). J Gen Appl Microbiol 45:247–251

  6. Iwata T, Doi Y (1998) Morphology and enzymatic degradation of poly(l-lactic acid) single crystals. Macromolecules 31:2461–2467

  7. Jarerat A, Tokiwa Y (2001) Degradation of poly(l-lactide) by fungus. Macromol Biosci 1:136–140

  8. Jarerat A, Tokiwa Y (2003a) Poly(l-lactide) degradation by Saccharotrix waywayandensis. Biotechnol Lett 25:401–404

  9. Jarerat A, Tokiwa Y (2003b) Poly(l-lactide) degradation by Kibdelosporangium aridum. Biotechnol Lett 25:2035–2038

  10. Jarerat A, Pranamuda H, Tokiwa Y (2002) Poly(l-lactide)-degrading activity in various actinomycetes. Macromol Biosci 2:420–428

  11. Jarerat A, Tokiwa Y, Tanaka H (2004) Microbial poly(l-lactide)-degrading enzyme induced by amino acids, peptides and poly(l-amino acids). J Polym Environ 12:139–146

  12. Li S, McCarthy (1999) Influence of crystallinity and stereochemistry on the enzymatic degradation of poly(lactide)s. Macromolecules 32:4454–4456

  13. Lim HA, Raku T, Tokiwa Y (2004) A new method for the evaluation of biodegradable plastic using coated cellulose paper. Macromol Biosci 4:875–881

  14. Lim HA, Raku T, Tokiwa Y (2005) Hydrolysis of polyesters by serine proteases. Biotechnol Lett 27:459–464

  15. Lunt J (1998) Large-scale production, properties and commercial applications of polylactic acid polymers. Polym Degrad Stab 59:145–152

  16. Madison LL, Huisman GW (1999) Metabolic engineering of poly(3-hydroxyalkanoates): from DNA to plastic. Microbiol Mol Biol Rev 63:21–53

  17. Masaki K, Kamini NR, Ikeda H, Iefuji H (2005) Cutinase-like enzyme from the yeast Cryptococcus sp. strain S-2 hydrolyses polylactic acid and other biodegradable plastics. Appl Environ Microbiol 7:7548–7550

  18. McDonald RT, McCarthy S, Gross RA (1996) Enzymatic degradability of poly(lactide): effects of chain stereochemistry and material crystallinity. Macromolecules 29:7356–7361

  19. Moon SI, Urayama H, Kimura Y (2003) Structural characterization and degradability of poly(l-lactic acid)s incorporating phenyl-substituted alpha-hydroxy acids as comonomers. Macromol Biosci 3:301–309

  20. Nakamura K, Tomita T, Abe N, Kamio Y (2001) Purification and characterization of an extracellular poly(l-lactic acid) depolymerase from a soil isolate, Amycolatopsis sp. strain K104-1. Appl Environ Microbiol 67:345–353

  21. Nishida H, Tokiwa Y (1992) Effects of higher-order structure of poly(3-hydroxybutyrate) on its biodegradation. I. Effects of heat treatment on microbial degradation. J Appl Polym Sci 46:1467–1476

  22. Nishida H, Tokiwa Y (1993) Distribution of poly (â-hydroxybutyrate) and poly (å-caprolactone) aerobic degrading microorganisms in different environments. J Environ Polym Degrad 1:227–233

  23. Oda Y, Yonetsu A, Urakami T, Tomomura K (2000) Degradation of polylactide by commercial proteases. J Polym Environ 8:29–32

  24. Ohkita T, Lee SH (2006) Thermal degradation and biodegradability of poly(lactic acid)/corn starch biocomposites. J Appl Polym Sci 100:3009–3017

  25. Pranamuda H, Tokiwa Y (1999) Degradation of poly(l-lactide) by strains belonging to genus Amycolatopsis. Biotechnol Lett 21:901–905

  26. Pranamuda H, Tokiwa Y, Tanaka H (1997) Polylactide degradation by an Amycolatopsis sp. Appl Environ Microbiol 63:1637–1640

  27. Pranamuda H, Chollakup R, Tokiwa Y (1999) Degradation of polycarbonate by a polyester-degrading strain, Amycolatopsis sp. strain HT-6. Appl Environ Microbiol 65:4220–4222

  28. Pranamuda H, Tsuchii A, Tokiwa Y (2001) Poly(l-lactide)-degrading enzyme produced by Amycolatopsis sp. Macromol Biosci 1:25–29

  29. Reeve, MS, McCarthy SP, Downey MJ, Gross RA (1994) Polylactide stereochemistry: effect on enzymatic degradability. Macromolecules 27:825–831

  30. Sakai K, Kawano H, Iwami A, Nakamura M, Moriguchi M (2001) Isolation of a thermophilic poly-l-lactide degrading bacterium from compost and its enzymatic characterization. J Biosci Bioeng 92:298–300

  31. Shigeno YA, Teeraphatpornchai T, Teamtisong K, Nomura N, Uchiyama H, Nakahara T, Kambe TN (2003) Cloning and sequencing of a poly(dl-lactic acid) depolymerase gene from Paenibacillus amylolyticus strain TB-13 and its functional expression in Escherichia coli. Appl Environ Microbiol 69:2498–2504

  32. Steinbuchel A (2001) Perspectives for biotechnological production and utilization of biopolymers: metabolic engineering of polyhydroxyalkanoate biosynthesis pathways as a successful example. Macromol Biosci 1:1–24

  33. Suyama T, Tokiwa Y, Ouichanpagdee P, Kanagawa T, Kamagata Y (1998) Phylogenetic affiliation of soil bacteria that degrade aliphatic polyesters available commercially as biodegradable plastics. Appl Environ Microbiol 64:5008–5011

  34. Takahashi Y, Okajima S, Toshima K, Matsumura S (2004) Lipase-catalyzed transformation of poly(lactic acid) into cyclic oligomers. Macromol Biosci 4:346–353

  35. Tansengco ML, Tokiwa Y (1998) Comparative population study of aliphatic polyesters-degrading microorganisms at 50 °C. Chem Lett 27:1043–1044

  36. Tokiwa Y, Suzuki T (1978) Hydrolysis of polyesters by Rhizopus delemar lipase. Agric Biol Chem 42:1071–1072

  37. Tokiwa Y, Suzuki T (1981) Hydrolysis of copolyesters containing aromatic and aliphatic ester blocks by lipase. J Appl Polym Sci 26:441–448

  38. Tokiwa Y, Suzuki T, Ando T (1979) Synthesis of copolyamide-esters and some aspects involved in their hydrolysis by lipase. J Appl Polym Sci 24:1701–1711

  39. TokiwaY, Konno M, Nishida H (1999) Isolation of silk degrading microorganisms and its poly(l-lactide) degradability. Chem Lett 28: 355–356

  40. Tokiwa Y, Pranamuda H, Rivaldi JD (2002) Polymerization of poly(d-lactide) and polyglycolide creates a novel biodegradable polymer (paper presented on the 10th Annual meeting of the BioEnvironmental Polymer Society, New Mexico, USA)

  41. Tomita K, Kuroki Y, Nagai K (1999) Isolation of thermophiles degrading poly(l-lactic acid). J Biosci Bioeng 87:752–755

  42. Tomita K, Tsuji H, Nakajima T, Kikuchi Y, Ikarashi K, Ikeda N (2003) Degradation of poly(d-lactic acid) by a thermophile. Polym Degrad Stab 81:167–171

  43. Tomita K, Nakajima T, Kikuchi Y, Miwa N (2004) Degradation of poly(l-lactic acid) by a newly isolated thermophile. Polym Degrad Stab 84:433–438

  44. Torres A, Li SM, Roussos S, Vert M (1996a) Degradation of l-and dl-lactic acid oligomers in the presence of Fusarium moniliforme and Pseudomonas putida. J Environ Polym Degrad 4:213–223

  45. Torres A, Li SM, Roussos S, Vert M (1996b) Screening of microorganisms for biodegradation of poly(lactic acid) and lactic acid-containing polymers. Appl Environ Microbiol 62:2393–2397

  46. Tsuji H, Ishizaka T (2001) Preparation of porous poly(δ-caprolactone) films from blends by selective enzymatic removal of poly(l-lactide). Macromol Biosci 1:359–365

  47. Tsuji H, Miyauchi S (2001) Poly(l-lactide) 6. Effects of crystallinity on enzymatic hydrolysis of poly(l-lactide) without free amorphous region. Polym Degrad Stab 71:415–424

  48. Urayama H, Kanamori T, Kimura Y (2002) Properties and biodegradability of polymer blends of poly(l-lactide)s with different optical purity of the lactate units. Macromol Mater Eng 287:116–121

  49. Vert M, Li S, Garreau H (1991) More about the degradation of LA/GA-derived matrices in aqueous media. J Control Release 16:15–26

  50. Williams DF (1981) Enzymatic hydrolysis of polylactic acid. Eng Med 10:5–7

Download references

Author information

Correspondence to Yutaka Tokiwa.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tokiwa, Y., Calabia, B.P. Biodegradability and biodegradation of poly(lactide). Appl Microbiol Biotechnol 72, 244–251 (2006). https://doi.org/10.1007/s00253-006-0488-1

Download citation

Keywords

  • Poly(lactide)
  • Biodegradability
  • Biodegradation
  • Amycolatopsis
  • Protease
  • Lipase