Advertisement

Applied Microbiology and Biotechnology

, Volume 72, Issue 2, pp 244–251 | Cite as

Biodegradability and biodegradation of poly(lactide)

  • Yutaka TokiwaEmail author
  • Buenaventurada P. Calabia
Mini-Review

Abstract

Poly(lactide) (PLA) has been developed and made commercially available in recent years. One of the major tasks to be taken before the widespread application of PLA is the fundamental understanding of its biodegradation mechanisms. This paper provides a short overview on the biodegradability and biodegradation of PLA. Emphasis is focused mainly on microbial and enzymatic degradation. Most of the PLA-degrading microorganisms phylogenetically belong to the family of Pseudonocardiaceae and related genera such as Amycolatopsis, Lentzea, Kibdelosporangium, Streptoalloteichus, and Saccharothrix. Several proteinous materials such as silk fibroin, elastin, gelatin, and some peptides and amino acids were found to stimulate the production of enzymes from PLA-degrading microorganisms. In addition to proteinase K from Tritirachium album, subtilisin, a microbial serine protease and some mammalian serine proteases such as α-chymotrypsin, trypsin, and elastase could also degrade PLA.

Keywords

Poly(lactide) Biodegradability Biodegradation Amycolatopsis Protease Lipase 

References

  1. Anderson AJ, Dawes EA (1990) Occurrence, metabolism, metabolic rule, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol Rev 54:450–472Google Scholar
  2. Cai H, Dave V, Gross RA, McCarthy SP (1996) Effects of physical aging, crystallinity, and orientation on the enzymatic degradation of poly(lactic acid). J Polym Sci B Polym Phys 34:2701–2708CrossRefGoogle Scholar
  3. Doi Y (1990) Microbial polyesters. VCH, New YorkGoogle Scholar
  4. Fukuzaki H, Yoshida M, Asano M, Kumakura M (1989) Synthesis of copoly(d,l-Lactic acid) with relatively low molecular weight and in vitro degradation. Eur Polym J 25:1019–1026CrossRefGoogle Scholar
  5. Ikura Y, Kudo T (1999) Isolation of a microorganism capable of degrading poly(l-lactide). J Gen Appl Microbiol 45:247–251CrossRefGoogle Scholar
  6. Iwata T, Doi Y (1998) Morphology and enzymatic degradation of poly(l-lactic acid) single crystals. Macromolecules 31:2461–2467CrossRefGoogle Scholar
  7. Jarerat A, Tokiwa Y (2001) Degradation of poly(l-lactide) by fungus. Macromol Biosci 1:136–140CrossRefGoogle Scholar
  8. Jarerat A, Tokiwa Y (2003a) Poly(l-lactide) degradation by Saccharotrix waywayandensis. Biotechnol Lett 25:401–404CrossRefGoogle Scholar
  9. Jarerat A, Tokiwa Y (2003b) Poly(l-lactide) degradation by Kibdelosporangium aridum. Biotechnol Lett 25:2035–2038CrossRefGoogle Scholar
  10. Jarerat A, Pranamuda H, Tokiwa Y (2002) Poly(l-lactide)-degrading activity in various actinomycetes. Macromol Biosci 2:420–428CrossRefGoogle Scholar
  11. Jarerat A, Tokiwa Y, Tanaka H (2004) Microbial poly(l-lactide)-degrading enzyme induced by amino acids, peptides and poly(l-amino acids). J Polym Environ 12:139–146CrossRefGoogle Scholar
  12. Li S, McCarthy (1999) Influence of crystallinity and stereochemistry on the enzymatic degradation of poly(lactide)s. Macromolecules 32:4454–4456CrossRefGoogle Scholar
  13. Lim HA, Raku T, Tokiwa Y (2004) A new method for the evaluation of biodegradable plastic using coated cellulose paper. Macromol Biosci 4:875–881CrossRefGoogle Scholar
  14. Lim HA, Raku T, Tokiwa Y (2005) Hydrolysis of polyesters by serine proteases. Biotechnol Lett 27:459–464CrossRefGoogle Scholar
  15. Lunt J (1998) Large-scale production, properties and commercial applications of polylactic acid polymers. Polym Degrad Stab 59:145–152CrossRefGoogle Scholar
  16. Madison LL, Huisman GW (1999) Metabolic engineering of poly(3-hydroxyalkanoates): from DNA to plastic. Microbiol Mol Biol Rev 63:21–53Google Scholar
  17. Masaki K, Kamini NR, Ikeda H, Iefuji H (2005) Cutinase-like enzyme from the yeast Cryptococcus sp. strain S-2 hydrolyses polylactic acid and other biodegradable plastics. Appl Environ Microbiol 7:7548–7550CrossRefGoogle Scholar
  18. McDonald RT, McCarthy S, Gross RA (1996) Enzymatic degradability of poly(lactide): effects of chain stereochemistry and material crystallinity. Macromolecules 29:7356–7361CrossRefGoogle Scholar
  19. Moon SI, Urayama H, Kimura Y (2003) Structural characterization and degradability of poly(l-lactic acid)s incorporating phenyl-substituted alpha-hydroxy acids as comonomers. Macromol Biosci 3:301–309CrossRefGoogle Scholar
  20. Nakamura K, Tomita T, Abe N, Kamio Y (2001) Purification and characterization of an extracellular poly(l-lactic acid) depolymerase from a soil isolate, Amycolatopsis sp. strain K104-1. Appl Environ Microbiol 67:345–353CrossRefGoogle Scholar
  21. Nishida H, Tokiwa Y (1992) Effects of higher-order structure of poly(3-hydroxybutyrate) on its biodegradation. I. Effects of heat treatment on microbial degradation. J Appl Polym Sci 46:1467–1476CrossRefGoogle Scholar
  22. Nishida H, Tokiwa Y (1993) Distribution of poly (â-hydroxybutyrate) and poly (å-caprolactone) aerobic degrading microorganisms in different environments. J Environ Polym Degrad 1:227–233CrossRefGoogle Scholar
  23. Oda Y, Yonetsu A, Urakami T, Tomomura K (2000) Degradation of polylactide by commercial proteases. J Polym Environ 8:29–32CrossRefGoogle Scholar
  24. Ohkita T, Lee SH (2006) Thermal degradation and biodegradability of poly(lactic acid)/corn starch biocomposites. J Appl Polym Sci 100:3009–3017CrossRefGoogle Scholar
  25. Pranamuda H, Tokiwa Y (1999) Degradation of poly(l-lactide) by strains belonging to genus Amycolatopsis. Biotechnol Lett 21:901–905CrossRefGoogle Scholar
  26. Pranamuda H, Tokiwa Y, Tanaka H (1997) Polylactide degradation by an Amycolatopsis sp. Appl Environ Microbiol 63:1637–1640Google Scholar
  27. Pranamuda H, Chollakup R, Tokiwa Y (1999) Degradation of polycarbonate by a polyester-degrading strain, Amycolatopsis sp. strain HT-6. Appl Environ Microbiol 65:4220–4222Google Scholar
  28. Pranamuda H, Tsuchii A, Tokiwa Y (2001) Poly(l-lactide)-degrading enzyme produced by Amycolatopsis sp. Macromol Biosci 1:25–29CrossRefGoogle Scholar
  29. Reeve, MS, McCarthy SP, Downey MJ, Gross RA (1994) Polylactide stereochemistry: effect on enzymatic degradability. Macromolecules 27:825–831CrossRefGoogle Scholar
  30. Sakai K, Kawano H, Iwami A, Nakamura M, Moriguchi M (2001) Isolation of a thermophilic poly-l-lactide degrading bacterium from compost and its enzymatic characterization. J Biosci Bioeng 92:298–300CrossRefGoogle Scholar
  31. Shigeno YA, Teeraphatpornchai T, Teamtisong K, Nomura N, Uchiyama H, Nakahara T, Kambe TN (2003) Cloning and sequencing of a poly(dl-lactic acid) depolymerase gene from Paenibacillus amylolyticus strain TB-13 and its functional expression in Escherichia coli. Appl Environ Microbiol 69:2498–2504CrossRefGoogle Scholar
  32. Steinbuchel A (2001) Perspectives for biotechnological production and utilization of biopolymers: metabolic engineering of polyhydroxyalkanoate biosynthesis pathways as a successful example. Macromol Biosci 1:1–24CrossRefGoogle Scholar
  33. Suyama T, Tokiwa Y, Ouichanpagdee P, Kanagawa T, Kamagata Y (1998) Phylogenetic affiliation of soil bacteria that degrade aliphatic polyesters available commercially as biodegradable plastics. Appl Environ Microbiol 64:5008–5011Google Scholar
  34. Takahashi Y, Okajima S, Toshima K, Matsumura S (2004) Lipase-catalyzed transformation of poly(lactic acid) into cyclic oligomers. Macromol Biosci 4:346–353CrossRefGoogle Scholar
  35. Tansengco ML, Tokiwa Y (1998) Comparative population study of aliphatic polyesters-degrading microorganisms at 50 °C. Chem Lett 27:1043–1044CrossRefGoogle Scholar
  36. Tokiwa Y, Suzuki T (1978) Hydrolysis of polyesters by Rhizopus delemar lipase. Agric Biol Chem 42:1071–1072Google Scholar
  37. Tokiwa Y, Suzuki T (1981) Hydrolysis of copolyesters containing aromatic and aliphatic ester blocks by lipase. J Appl Polym Sci 26:441–448CrossRefGoogle Scholar
  38. Tokiwa Y, Suzuki T, Ando T (1979) Synthesis of copolyamide-esters and some aspects involved in their hydrolysis by lipase. J Appl Polym Sci 24:1701–1711CrossRefGoogle Scholar
  39. TokiwaY, Konno M, Nishida H (1999) Isolation of silk degrading microorganisms and its poly(l-lactide) degradability. Chem Lett 28: 355–356Google Scholar
  40. Tokiwa Y, Pranamuda H, Rivaldi JD (2002) Polymerization of poly(d-lactide) and polyglycolide creates a novel biodegradable polymer (paper presented on the 10th Annual meeting of the BioEnvironmental Polymer Society, New Mexico, USA)Google Scholar
  41. Tomita K, Kuroki Y, Nagai K (1999) Isolation of thermophiles degrading poly(l-lactic acid). J Biosci Bioeng 87:752–755CrossRefGoogle Scholar
  42. Tomita K, Tsuji H, Nakajima T, Kikuchi Y, Ikarashi K, Ikeda N (2003) Degradation of poly(d-lactic acid) by a thermophile. Polym Degrad Stab 81:167–171CrossRefGoogle Scholar
  43. Tomita K, Nakajima T, Kikuchi Y, Miwa N (2004) Degradation of poly(l-lactic acid) by a newly isolated thermophile. Polym Degrad Stab 84:433–438CrossRefGoogle Scholar
  44. Torres A, Li SM, Roussos S, Vert M (1996a) Degradation of l-and dl-lactic acid oligomers in the presence of Fusarium moniliforme and Pseudomonas putida. J Environ Polym Degrad 4:213–223CrossRefGoogle Scholar
  45. Torres A, Li SM, Roussos S, Vert M (1996b) Screening of microorganisms for biodegradation of poly(lactic acid) and lactic acid-containing polymers. Appl Environ Microbiol 62:2393–2397Google Scholar
  46. Tsuji H, Ishizaka T (2001) Preparation of porous poly(δ-caprolactone) films from blends by selective enzymatic removal of poly(l-lactide). Macromol Biosci 1:359–365CrossRefGoogle Scholar
  47. Tsuji H, Miyauchi S (2001) Poly(l-lactide) 6. Effects of crystallinity on enzymatic hydrolysis of poly(l-lactide) without free amorphous region. Polym Degrad Stab 71:415–424CrossRefGoogle Scholar
  48. Urayama H, Kanamori T, Kimura Y (2002) Properties and biodegradability of polymer blends of poly(l-lactide)s with different optical purity of the lactate units. Macromol Mater Eng 287:116–121CrossRefGoogle Scholar
  49. Vert M, Li S, Garreau H (1991) More about the degradation of LA/GA-derived matrices in aqueous media. J Control Release 16:15–26CrossRefGoogle Scholar
  50. Williams DF (1981) Enzymatic hydrolysis of polylactic acid. Eng Med 10:5–7CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.National Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan

Personalised recommendations