Advertisement

Applied Microbiology and Biotechnology

, Volume 73, Issue 2, pp 332–338 | Cite as

Whole-cell arsenite biosensor using photosynthetic bacterium Rhodovulum sulfidophilum

Rhodovulum sulfidophilum as an arsenite biosensor
  • Hiroyuki Fujimoto
  • Masato Wakabayashi
  • Hidenori Yamashiro
  • Isamu Maeda
  • Katsuhiro Isoda
  • Masuo Kondoh
  • Masaya Kawase
  • Hitoshi Miyasaka
  • Kiyohito YagiEmail author
Biotechnological Products and Process Engineering

Abstract

An arsenite biosensor plasmid was constructed in Escherichia coli by inserting the operator/promoter region of the ars operon and the arsR gene from E. coli and the crtA gene, which is responsible for carotenoid synthesis in the photosynthetic bacterium, Rhodovulum sulfidophilum, into the broad-host-range plasmid vector, pRK415. The biosensor plasmid, pSENSE-As, was introduced into a crtA-deleted mutant strain of R. sulfidophilum (CDM2), which is yellow in culture due to its content of spheroiden (SE) and demethylspheroidene (DMSE). CDM2 containing pSENSE-As changed from yellow to red by the addition of arsenite, which caused enzymatic transformation of SE and DMSE to spheroidenone (SO) and demethylspheroidenone (DMSO). Reverse transcriptase PCR analysis showed that the color change depended on transcription of the crtA gene in pSENSE-As. The color change could be clearly recognized with the naked eye at 5 μg/l arsenite. The biosensor strain did not respond to other metals except for bismuth and antimony, which caused significant accumulation of SO and DMSO in the cells at 60 and 600 μg/l, respectively. This biosensor indicates the presence of arsenite with a bacterial color change without the need to add a special reagent or substrate for color development, enabling this pollutant to be monitored in samples by the naked eye in sunlight, even where electricity is not available.

Keywords

Carotenoid Arsenite Photosynthetic Bacterium Sensor Strain Carotenoid Synthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Belkin S (2003) Microbial whole-cell sensing systems of environmental pollutants. Curr Opin Microbiol 6:206–212CrossRefGoogle Scholar
  2. D’Souza SF (2001) Microbial biosensors. Biosens Bioelectron 16:337–353CrossRefGoogle Scholar
  3. Gillor O, Harush A, Hadas O, Post AF, Belkin S (2003) A Synechococcus PglnA:luxAB fusion for estimation of nitrogen bioavailability to freshwater cyanobacteria. Appl Environ Microbiol 69:1465–1474CrossRefGoogle Scholar
  4. Kaur P, Rosen BP (1992) Plasmid-encoded resistance to arsenic and antimony. Plasmid 27:29–40CrossRefGoogle Scholar
  5. Keen NT, Tamaki S, Kobayashi D, Trollinger D (1988) Improved broad-host-range plasmids for DNA cloning in gram-negative bacteria. Gene 70:191–197CrossRefGoogle Scholar
  6. Lopez Maury L, Florencio FJ, Reyes JC (2003) Arsenic sensing and resistance system in the cyanobacterium Synechocystis sp. strain PCC 6803. J Bacteriol 185:5363–5371CrossRefGoogle Scholar
  7. Maeda I, Miyasaka H, Umeda F, Kawase M, Yagi K (2003) Maximization of hydrogen production ability in high-density suspension of Rhodovulum sulfidophilum cells using intracellular poly(3-hydroxybutyrate) as sole substrate. Biotechnol Bioeng 81:474–481CrossRefGoogle Scholar
  8. Maeda I, Yamashiro H, Yoshioka D, Onodera M, Ueda S, Miyasaka H, Umeda F, Kawase M, Takaichi S, Yagi K (2005) Unusual accumulation of demethylspheroidene in anaerobic–phototrophical growth of crtA-deleted mutants of Rhodovulum sulfidophilum. Curr Microbiol 51:193–197CrossRefGoogle Scholar
  9. Maeda I, Yamashiro H, Yoshioka D, Onodera M, Ueda S, Kawase M, Miyasaka H, Yagi K (2006) Colorimetric dimethyl sulphide sensor using cells of Rhodovulum sulfidophilum cells based on intrinsic pigment conversion by CrtA. Appl Microbiol Biotechnol 70:397–402CrossRefGoogle Scholar
  10. Masuda S, Yoshida M, Nagashima KV, Shimada K, Matsuura K (1999) A new cytochrome subunit bound to the photosynthetic reaction center in the purple bacterium, Rhodovulum sulfidophilum. J Biol Chem 274:10795–10801CrossRefGoogle Scholar
  11. Nordstrom DK (2002) Public health. Worldwide occurrences of arsenic in ground water. Science 296:2143–2145CrossRefGoogle Scholar
  12. Sambrook J, Fritsch EF, Maniatis T (1982) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  13. Shi W, Dong J, Scott RA, Ksenzenko MY, Rosen BP (1996) The role of arsenic–thiol interactions in metalloregulation of the ars operon. J Biol Chem 271:9291–9297CrossRefGoogle Scholar
  14. Simon R, Priefer U, Puhler A (1983) A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria. Biotechnology 1:784–791CrossRefGoogle Scholar
  15. Stocker J, Balluch D, Gsell M, Harms H, Feliciano J, Daunert S, Malik KA, van der Meer JR (2003) Development of a set of simple bacterial biosensors for quantitative and rapid measurements of arsenite and arsenate in potable water. Environ Sci Technol 37:4743–4750CrossRefGoogle Scholar
  16. Takaichi S (2001) Carotenoids and carotenogenesis in anoxygenic photosynthetic bacteria. Kluwer, NorwellGoogle Scholar
  17. Takaichi S, Jung D, Madigan M (2001) Accumulation of unusual carotenoids in the spheroidene pathway, demethylspheroidene and demethylspheroidenone, in an alkaliphilic purple nonsulfur bacterium Rhodobacter bogoriensis. Photosynth Res 67:207–214CrossRefGoogle Scholar
  18. Tsien RY (1998) The green fluorescent protein. Annu Rev Biochem 67:509–544CrossRefGoogle Scholar
  19. Wilson T, Hastings JW (1998) Bioluminescence. Annu Rev Cell Dev Biol 14:197–230CrossRefGoogle Scholar
  20. Wu J, Rosen BP (1991) The ArsR protein is a trans-acting regulatory protein. Mol Microbiol 5:1331–1336CrossRefGoogle Scholar
  21. Wu J, Rosen BP (1993) Metalloregulated expression of the ars operon. J Biol Chem 268:52–58Google Scholar
  22. Yanisch Perron C, Vieira J, Messing J (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–119CrossRefGoogle Scholar
  23. Yeliseev AA, Eraso JM, Kaplan S (1996) Differential carotenoid composition of the B875 and B800-850 photosynthetic antenna complexes in Rhodobacter sphaeroides 2.4.1: involvement of spheroidene and spheroidenone in adaptation to changes in light intensity and oxygen availability. J Bacteriol 178:5877–5883Google Scholar
  24. Yun CH, Beci R, Crofts AR, Kaplan S, Gennis RB (1990) Cloning and DNA sequencing of the fbc operon encoding the cytochrome bc1 complex from Rhodobacter sphaeroides. Characterization of fbc deletion mutants and complementation by a site-specific mutational variant. Eur J Biochem 194:399–411CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Hiroyuki Fujimoto
    • 1
  • Masato Wakabayashi
    • 1
  • Hidenori Yamashiro
    • 1
  • Isamu Maeda
    • 2
  • Katsuhiro Isoda
    • 1
  • Masuo Kondoh
    • 1
  • Masaya Kawase
    • 1
  • Hitoshi Miyasaka
    • 3
  • Kiyohito Yagi
    • 1
    Email author
  1. 1.Graduate School of Pharmaceutical SciencesOsaka UniversitySuitaJapan
  2. 2.Faculty of AgricultureUtsunomiya UniversityMinemachiJapan
  3. 3.Environmental Research CenterKansai Electric Power Co.SourakugunJapan

Personalised recommendations