Advertisement

Applied Microbiology and Biotechnology

, Volume 73, Issue 1, pp 187–194 | Cite as

Monorhamnolipids and 3-(3-hydroxyalkanoyloxy)alkanoic acids (HAAs) production using Escherichia coli as a heterologous host

  • Natividad Cabrera-Valladares
  • Anne-Pascale Richardson
  • Clarita Olvera
  • Luis Gerardo Treviño
  • Eric Déziel
  • François Lépine
  • Gloria Soberón-ChávezEmail author
Applied Genetics and Molecular Biotechnology

Abstract

Pseudomonas aeruginosa produces the biosurfactants rhamnolipids and 3-(3-hydroxyalkanoyloxy)alkanoic acids (HAAs). In this study, we report the production of one family of rhamnolipids, specifically the monorhamnolipids, and of HAAs in a recombinant Escherichia coli strain expressing P. aeruginosa rhlAB operon. We found that the availability in E. coli of dTDP-l-rhamnose, a substrate of RhlB, restricts the production of monorhamnolipids in E. coli. We present evidence showing that HAAs and the fatty acid dimer moiety of rhamnolipids are the product of RhlA enzymatic activity. Furthermore, we found that in the recombinant E. coli, these compounds have the same chain length of the fatty acid dimer moiety as those produced by P. aeruginosa. These data suggest that it is RhlAB specificity, and not the hydroxyfatty acid relative abundance in the bacterium, that determines the profile of the fatty acid moiety of rhamnolipids and HAAs. The rhamnolipids level produced in recombinant E. coli expressing rhlAB is lower than the P. aeruginosa level and much higher than those reported by others in E. coli, showing that this metabolic engineering strategy lead to an increased rhamnolipids production in this heterologous host.

Keywords

Oleic Acid Quorum Sense Biosurfactants Acyl Carrier Protein Rhamnolipids 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We are grateful to Rosalba Sánchez and Marisela Aguirre-Ramírez for technical assistance. This research was founded in part by Universidad Nacional Autónoma de México through grants DGAPA PAPIIT IIX201404 and IN203305.

References

  1. Amman E, Ochs B, Abel KJ (1988) Tightly regulated tac promoter vectors useful for the expression of unfused and fused proteins in Escherichia coli. Gene 69:301–315CrossRefGoogle Scholar
  2. Boyer HB, Roulland-Dussoix D (1969) A complementation analysis of the restriction and modification of DNA in Escherichia coli. J Mol Biol 4:459–472CrossRefGoogle Scholar
  3. Burger MM, Glaser L, Burton RM (1963) The enzymatic synthesis of rhamnose-containing glycolipids by extracts of Pseudomonas aeruginosa. J Biol Chem 238:2595-2602Google Scholar
  4. Chandrasekaran EV, Bemiller JN (1980) Constituent analyses of glycosaminoglycans. Methods Carbohydr Chem 8:89–96Google Scholar
  5. Costerton JW (1980) Pseudomonas aeruginosa in nature and disease. In: Sabath CD (ed), Pseudomonas aeruginosa: the organism, diseases it causes and their treatment. Hans Huber Publishers, Bern, Switzerland, pp 15–24Google Scholar
  6. Darzins A, Chakrabarty AM (1984) Cloning of genes controlling alginate biosynthesis from a mucoid cystic fibrosis isolate of Pseudomonas aeruginosa. J Bacteriol 159:9–18Google Scholar
  7. Déziel E, Lépine F, Milot S, Villemur R (2000) Mass spectrometry monitoring of rhamnolipids from growing cultures of Pseudomonas aeruginosa 57RP. Biochim Biophys Acta 1485:145–152Google Scholar
  8. Déziel E, Lépine F, Milot S, Villemur R (2003) rhlA is required for the production of a novel biosurfactant promoting swarming motility in Pseudomonas aeruginosa 3-(3-hydroxyalkanoyloxy)alkanoic acids) (HAAs), the precursors of rhamnolipids. Microbiology (UK) 149:2005–2013CrossRefGoogle Scholar
  9. Graninger M, Nidetzky B, Heinrichs DE, Whitfield C, Messner P (1999) Characterization of dTDP-4-dehydrorhamnose 3,5-epimerase and dTDP-4-dehydrorhamnose reductase, required for dTDP-l-rhamnose biosynthesis in Salmonella enterica serovar typhimurium LT2. J Biol Chem 274:25069–25077CrossRefGoogle Scholar
  10. Hancock REW, Carey AM (1979) Outer membrane of Pseudomonas aeruginosa: heat-and 2-mercaptoethanol-modifiable proteins. J Bacteriol 140:902–910Google Scholar
  11. Jensen KF (1993) The Escherichia coli K12 “wild types” W3110 and MG1655 have an rph frameshift mutation that leads to pyrimidine starvation due to low pyrE expression levels. J Bacteriol 175:3401–3407Google Scholar
  12. Klena JD, Schnaitman CA (1993) Function of the rfb gene cluster and the rfe gene in the synthesis of O antigen by Shigella dysenteriae 1. Mol Microbiol 9:393–402Google Scholar
  13. Lang S, Wullbrandt D (1999) Rhamnose lipids-biosynthesis, microbial production and application potential. Appl Microbiol Biotechnol 51:22–32CrossRefGoogle Scholar
  14. Le Borgne S, Palmeros B, Valle F, Bolivar F, Gosset G (1998) pBRINT-Ts: a plasmid family with a temperature-sensitive replicon, designed for chromosomal integration into the lacZ gene of Escherichia coli. Gene 223:213–219CrossRefGoogle Scholar
  15. Lépine F, Déziel E, Milot S, Villemur R (2002) Liquid chromatographic/mass spectrometric detection of the 3-(3-hydroxyalkanoyloxy)alkanoic acid precursors of rhamnolipids in Pseudomonas aeruginosa cultures. J Mass Spectr 37:41–46CrossRefGoogle Scholar
  16. Maier MR, Soberón-Chávez G (2000) Pseudomonas aeruginosa rhamnolipids: biosynthesis and potential applications. Appl Microbiol Biotechnol 54:625–633CrossRefGoogle Scholar
  17. Marumo K, Lindqvist L, Verma M, Wientraub A, Reeves PR, Lindberg AA (1992) Enzymatic synthesis and isolation of thymidine diphosphate-6-deoxy-d-xylo-4-hexulose and thymidine diphosphate-l-rhamnose. Eur J Biochem 204:539–545CrossRefGoogle Scholar
  18. Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp 431–435Google Scholar
  19. Ochsner UA, Fiechter A, Reiser J (1994) Isolation, characterization, and expression in Escherichia coli of the Pseudomonas aeruginosa rhlAB genes encoding a rhamnosyltransferase involved in rhamnolipid biosurfactant synthesis. J Biol Chem 269:19787–19795Google Scholar
  20. Ochsner UA, Reiser J, Fietcher A, Witholt B (1995) Production of Pseudomonas aeruginosa rhamnolipid biosurfactants in heterologous host. Appl Environ Microbiol 61:3503–3506Google Scholar
  21. Preston MJ, Seed PC, Toder DS, Iglewski BH, Ohman DE, Gustin JK, Goldberg JB, Pier GB (1997) Contribution of proteases and LasR to the virulence of Pseudomonas aeruginosa during corneal infections. Infect Immun 65:3086–3090Google Scholar
  22. Rahim R, Burrows LL, Monteiro MA, Perry MB, Lam JS (2000) Involvement of the rml locus in core oligosaccharide and O polysaccharide assembly in Pseudomonas aeruginosa. Microbiology 146:2803–2814Google Scholar
  23. Rahim R, Ochsner UA, Olvera C, Graninger M, Messner P, Lam JS, Soberón-Chávez G (2001) Cloning and functional characterization of the Pseudomonas aeruginosa rhlC gene that encodes rhamnosyltransferase 2, an enzyme responsible for dirhamnolipid biosynthesis. Mol Microbiol 40:708–718CrossRefGoogle Scholar
  24. Rehm BHA, Kruger N, Steinbüchel A (1998) A new metabolic link between fatty acid de novo synthesis and other proteins required for PHA synthesis. J Biol Chem 273:24044–24051CrossRefGoogle Scholar
  25. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning. A laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New YorkGoogle Scholar
  26. Schuster M, Lostroh CP, Ogi T, Greenberg EP (2003) Identification, timing, and signal specificity of Pseudomonas aeruginosa quorum-controlled genes: a transcriptome analysis. J Bacteriol 185:2066–2079CrossRefGoogle Scholar
  27. Smith RS, Iglewski BH (2003) P. aeruginosa quorum-sensing systems and virulence. Curr Opin Microbiol 6:56–60CrossRefGoogle Scholar
  28. Soberón-Chávez G, Lépine F, Déziel E (2005a) Production of rhamnolipids by Pseudomonas aeruginosa. Appl Microbiol Biotechnol 68:718–725CrossRefGoogle Scholar
  29. Soberón-Chávez G, Aguirre-Ramírez M, Ordóñez LG (2005b) Is Pseudomonas aeruginosa only sensing quorum? Critical Rev Microbiol 31:171–182CrossRefGoogle Scholar
  30. Timm A, Steinbüchel A (1990) Formation of polyesters consisting of medium-chain-length 3-hydroxyalkanoates acids from gluconate by Pseudomonas aeruginosa and other fluorescent Pseudomonads. Appl Environ Microbiol 56:3360–3367Google Scholar
  31. van Delden C, Iglewski BH (1998) Cell-to cell signaling and Pseudomonas aeruginosa infections. Emerg Infect Dis 4:551–560CrossRefGoogle Scholar
  32. Wagner VE, Bushnell D, Passador L, Brooks AI, Iglewski BH (2003) Microarray analysis of Pseudomonas aeruginosa quorum-sensing regulons: effects of growth phase and environment. J Bacteriol 185:2080–2095CrossRefGoogle Scholar
  33. White D (2000) The synthesis of fatty acids. In: The physiology and biochemistry of prokaryotes, 2nd edn. Oxford University Press, New York, 2000 pp 214–217Google Scholar
  34. Yanisch-Perron C, Viera J, Messing J (1985) Improved M13 cloning vectors and host strains: nucleotide sequence of M13mp18 and pUC19 vectors. Gene 33:103–119CrossRefGoogle Scholar
  35. Zhang Y, Miller RM (1992) Enhancement of octadecane dispersion and biodegradation by a Pseudomonas rhamnolipid surfactant (biosurfactant). Appl Environ Microbiol 58:3276–3282Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Natividad Cabrera-Valladares
    • 1
  • Anne-Pascale Richardson
    • 2
  • Clarita Olvera
    • 1
  • Luis Gerardo Treviño
    • 3
  • Eric Déziel
    • 2
  • François Lépine
    • 2
  • Gloria Soberón-Chávez
    • 4
    Email author
  1. 1.Departamento de Ingeniería Celular y Biocatálisis, Instituto de BiotecnologíaUniversidad Nacional Autónoma de México (UNAM)MexicoMexico
  2. 2.INRS-Institut Armand-FrappierLavalCanada
  3. 3.Programa de Genómica Computacional, Centro de Ciencias GenómicasUNAMMexicoMexico
  4. 4.Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones BiomédicasUNAMMexicoMexico

Personalised recommendations