Overview of bacterial expression systems for heterologous protein production: from molecular and biochemical fundamentals to commercial systems



During the proteomics period, the growth in the use of recombinant proteins has increased greatly in the recent years. Bacterial systems remain most attractive due to low cost, high productivity, and rapid use. However, the rational choice of the adequate promoter system and host for a specific protein of interest remains difficult. This review gives an overview of the most commonly used systems: As hosts, Bacillus brevis, Bacillusmegaterium, Bacillussubtilis, Caulobacter crescentus, other strains, and, most importantly, Escherichia coli BL21 and E. coli K12 and their derivatives are presented. On the promoter side, the main features of the l-arabinose inducible araBAD promoter (PBAD), the lac promoter, the l-rhamnose inducible rhaPBAD promoter, the T7 RNA polymerase promoter, the trc and tac promoter, the lambda phage promoter pL, and the anhydrotetracycline-inducible tetA promoter/operator are summarized.


  1. Amann E, Brosius J, Ptashne M (1983) Vectors bearing a hybrid trp-lac promoter useful for regulated expression of cloned genes in Escherichia coli. Gene 25:167–178Google Scholar
  2. Anna DF, Rosa M, Emilia P, Simonetta B, Mose R (2003) High-level expression of Aliciclobacillus acidocaldarius thioredoxin in Pichia pastoris and Bacillus subtilis. Protein Expr Purif 30:179–184Google Scholar
  3. Arechaga I, Miroux B, Karrasch S, Huijbregts R, De Kruiff B, Runswick MJ, Walker JE (2000) Characterisation of new intracellular membranes in Escherichia coli accompanying large scale over-production of the b subunit of F1F0 ATP synthase. FEBS Lett 482:215–219Google Scholar
  4. Armarego WL, Cotton RG, Dahl HH, Dixon NE (1989) High-level expression of human dihydropteridine reductase (EC, without N-terminal amino acid protection, in Escherichia coli. Biochem J 261:265–268Google Scholar
  5. Awram P, Smit J (1998) The Caulobacter crescentus paracrystalline S-layer protein is secreted by an ABC transporter (type I) secretion apparatus. J Bacteriol 180:3062–3069Google Scholar
  6. Baneyx F (1999) Recombinant protein expression in Escherichia coli. Curr Opin Biotechnol 10:411–421Google Scholar
  7. Barnard GC, Henderson GE, Srinivasan S, Gerngross TU (2004) High level recombinant protein expression in Ralstonia eutropha using T7 RNA polymerase based amplification. Protein Expr Purif 38:264–271Google Scholar
  8. Bessette PH, Aslund F, Beckwith J, Georgiou G (1999) Efficient folding of proteins with multiple disulfide bonds in the Escherichia coli cytoplasm. Proc Natl Acad Sci USA 96:13703–13708Google Scholar
  9. Bingle WH, Nomellini JF, Smit J (2000) Secretion of the Caulobacter crescentus S-layer protein: Further localization of the C-terminal secretion signal and its use for secretion of recombinant proteins. J Bacteriol 182:3298–3301Google Scholar
  10. Braaz R, Wong SL, Jendrossek D (2002) Production of PHA depolymerase A (PhaZ5 from Paucimonas lemoignei in Bacillus subtilis. FEMS Microbiol Lett 209:237–241Google Scholar
  11. Brawner ME (1994) Advances in heterologous gene expression by Streptomyces. Curr Opin Biotechnol 5:475–481Google Scholar
  12. Brosius J, Erfle M, Storella J (1985) Spacing of the −10 and −35 regions in the tac promoter. Effect on its in vivo activity. J Biol Chem 260:3539–3541Google Scholar
  13. Burger S, Tatge H, Hofmann F, Genth H, Just I, Gerhard R (2003) Expression of recombinant Clostridium difficile toxin A using the Bacillus megaterium system. Biochem Biophys Res Commun 307:584–588Google Scholar
  14. Cho HY, Yukawa H, Inui M, Doi RH, Wong S-L (2004) Production of minicellulosomes from Clostridium cellulovorans in Bacillus subtilis WB800. Appl Environ Microbiol 70:5704–5707Google Scholar
  15. Choi JH, Lee SY (2004) Secretory and extracellular production of recombinant proteins using Escherichia coli. Appl Microbiol Biotechnol 64:625–635Google Scholar
  16. Daguer JP, Chamber R, Petit-Glatron MF (2005) Increasing the stability of sacB transcript improves levansucrase production in Bacillus subtilis. Lett Appl Microbiol 41:221–226Google Scholar
  17. De Boer HA, Comstock LJ, Vasser M (1983) The tac promoter: a functional hybrid derived from the trp and lac promoters. Proc Natl Acad Sci USA 80:21–25Google Scholar
  18. Degenkolb J, Takahashi M, Ellestad GA, Hillen W (1991) Structural requirements of tetracycline-Tet repressor interaction: determination of equilibrium binding constants for tetracycline analogs with the Tet repressor. Antimicrob Agents Chemother 35:1591–1595Google Scholar
  19. DeLisa MP, Li J, Rao R, Weigand WA, Bentley WE (1999) Monitoring GFP-operon fusion protein expression during high cell density cultivation of Escherichia coli using an on-line optical sensor. Biotechnol Bioeng 65:54–64Google Scholar
  20. Desplanq D, Bernard C, Sibler AP, Kieffer B, Miguet L, Potier N, Van Dorsselaer A, Weiss E (2005) Combining inducible protein overexpression with NMR-grade triple isotope labeling in the cyanobacterium Anabaena sp. PCC 7120. Biotechniques 39:405–411Google Scholar
  21. Dong H, Nilsson L, Kurland CG (1996) Co-variation of tRNA abundance and codon usage in Escherichia coli at different growth rate. J Mol Biol 260:649–663Google Scholar
  22. Dubendorff JW, Studier FW (1991) Controlling basal expression in an inducible T7 expression system by blocking the target T7 promoter with lac repressor. J Mol Biol 219:45–59Google Scholar
  23. Egan SM, Schleif RF (1993) A regulatory cascade in the induction of rhaBAD. J Mol Biol 234:87–98Google Scholar
  24. Elvin CM, Thompson PR, Argall ME, Hendry P, Stamford NP, Lilley PE, Dixon NE (1990) Modified bacteriophage lambda promoter for overproduction of proteins in Escherichia coli. Gene 87:123–126Google Scholar
  25. England DF, Penfold RJ, Delaney SF, Rogers PL (1997) Isolation of Bacillus megaterium mutants that produce high levels of heterologous protein, and their use to construct a highly mosquitocidal strain. Curr Microbiol 35:71–76Google Scholar
  26. FitzGerald KA, Lidstrom ME (2003) Overexpression of a heterologous protein, haloalkane dehalogenase, in a poly-beta-hydroxybutyrate-deficient strain of the facultative methylotroph Methylobacterium extorquens AM1. Biotechnol Bioeng 81:263–268Google Scholar
  27. Geissendörfer M, Hillen W (1990) regulated expression of heterologous genes in Bacillus subtilis using the Tn10 encoded tet regulatory elements. Appl Microbiol Biotechnol 33:657–663Google Scholar
  28. Georgiou G, Segatori L (2005) Preparative expression of secreted proteins in bacteria: status report and future prospects. Curr Opin Biotechnol 16:538–545Google Scholar
  29. Goldman E, Rosenberg AH, Zubay G, Studier FW (1995) Consecutive low-usage leucine codons block translation only when near the 5′ end of a message in Escherichia coli. J Mol Biol 245:467–473Google Scholar
  30. Gronenborn (1976) Overproduction of phage lambda repressor under control of the lac promotor of Escherichia coli. Mol Gen Genet 148:243–250Google Scholar
  31. Grossman TH, Kawasaki ES, Punreddy SR, Osburne MS (1998) Spontaneous cAMP-dependent derepression of gene expression in stationary phase plays a role in recombinant expression instability. Gene 209:95–103Google Scholar
  32. Gutierrez J, Bourque D, Criado R, Choi YJ, Cintas LM, Hernandez PE, Miguez CB (2005) Heterologous extracellular production of enterocin P from Enterococcus faecium P13 in the methylotrophic bacterium Methylobacterium extorquens. FEMS Microbiol Lett 248:125–131Google Scholar
  33. Guzman LM, Belin D, Carson MJ, Beckwith J (1995) Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol 177:4121–4130Google Scholar
  34. Haldimann A, Daniels L, Wanner B (1998) Use of new methods for construction of tightly regulated arabinose and rhamnose promotor fusions in studies of the Escherichia coli phosphate regulon. J Bacteriol 180:1277–1286Google Scholar
  35. Hansson M, Samuelson P, Nguyen TN, Stahl S (2002) General expression vectors for Staphylococcus carnosus enabled efficient production of the outer membrane protein A of Klebsiella pneumoniae. FEMS Microbiol Lett 210:263–270Google Scholar
  36. Henner DJ (1990) Inducible expression of regulatory genes in Bacillus subtilis. Methods Enzymol 185:223–228Google Scholar
  37. Hockney RC (1994) Recent developments in heterologous protein production in Escherichia coli. Trends Biotechnol 12:456–463Google Scholar
  38. Horinouchi S, Weisblum B (1982) Nucleotide sequence and functional map of pE194, a plasmid that specifies inducible resistance to macrolide, lincosamide, and streptogramin type B antibodies. J Bacteriol 150:804–814Google Scholar
  39. Huang HC, Sherman MY, Kandror O, Goldberg AL (2001) The molecular chaperone DnaJ is required for the degradation of a soluble abnormal protein in Escherichia coli. J Biol Chem 276:3920–3928Google Scholar
  40. Ichikawa Y, Yamagata H, Tochikubo K, Udaka S (1993) Very efficient extracellular production of cholera toxin B subunit using Bacillus brevis. FEMS Microbiol Lett 111:219–224Google Scholar
  41. Inoue Y, Ohta T, Tada H, Iwasa S, Udaka S, Yamagata H (1997) Efficient production of a functional mouse/human chimeric Fab′ against human urokinase-type plasminogen activator by Bacillus brevis. Appl Microbiol Biotechnol 48:487–492Google Scholar
  42. Joly JC, Swartz JR (1994) Protein folding activities of Eschrichia coli protein disulfide isomerase. Biochemistry 12:4231–4236Google Scholar
  43. Kajino T, Saito Y, Hirai M, Asami O, Yamada Y, Udaka S (1997) Extracellular production of an intact and biologically active human growth hormone by the Bacillus brevis system. J Ind Microbiol Biotech 19:227–231Google Scholar
  44. Kajino T, Ohto C, Muramatsu M, Obata S, Udaka S, Yamada Y, Takahashi H (1999) A protein disulfid isolerase gene fusion expression system that increases the extracellular productivity of Bacillus brevis. Appl Environ Microbiol 66:638–642Google Scholar
  45. Kajino T, Takahashi H, Hirai M, Yamada Y (2000) Efficient production of artificially designed gelatins with a Bacillus brevis system. Appl Environ Microbiol 66:304–309Google Scholar
  46. Kane JF (1995) Effects of rare codon clusters on high-level expression of heterologous proteins in Escherichia coli. Curr Opin Biotechnol 6:494–500Google Scholar
  47. Kashima Y, Udaka S (2004) High-level production of hyperthermophilic cellulase in the Bacillus brevis expression and secretion system. Biosci Biotechnol Biochem 68:235–237Google Scholar
  48. Kawamura F, Doi RH (1984) Construction of a Bacillus subtilis double mutant deficient in extracellular alkaline and neutral proteases. J Bacteriol 160:442–444Google Scholar
  49. Kim L, Mogk A, Schumann W (1996) A xylose-inducible Bacillus subtilis interation vector and its application. Gene 181:71–76Google Scholar
  50. Konishi H, Sato T, Yamagata H, Udaka S (1990) Efficient production of human alpha-amylase by a Bacillus brevis mutant. Appl Microbiol Biotechnol 34:297–302Google Scholar
  51. Korpela MT, Kurittu JS, Karvinen JT, Karp MT (1998) A recombinant Escherichia coli sensor strain for the detection of tetracyclines. Anal Chem 70:4457–4462Google Scholar
  52. Kurland C, Gallant J (1996) Errors of heterologous protein expression. Curr Opin Biotechnol 7:489–493Google Scholar
  53. Lam KH, Chow KC, Wong WK (1998) Construction of an efficient Bacillus subtilis system for extracellular production of heterologous proteins. J Biotechnol 63:167–177Google Scholar
  54. Landry TD, Chew L, Davis JW, Frawley N, Foley HH, Stelman SJ, Thomas J, Wolt J, Hanselmann DS (2003) Safety evaluation of an α-amylase enzyme preparation derived from the archaeal order Thermococcales as expressed in Pseudomonas fluorescens biovar I. Regul Toxicol Pharmacol 37:149–168Google Scholar
  55. Le Grice SF (1990) Regulated promoter for high-level expression of heterologous genes in Bacillus subtilis. Methods Enzymol 185:201–214Google Scholar
  56. Lesuisse E, Schanck K, Colson C (1993) Purification and preliminary characterization of the extracellular lipase of Bacillus subtilis 168, an extreme basic pH-tolerant enzyme. Eur J Biochem 216:155–160Google Scholar
  57. Li W, Zhou X, Lu P (2004) Bottlenecks in the expression and secretion of heterologous proteins in Bacillus subtilis. Res Microbiol 155:605–610Google Scholar
  58. Love CA, Lilley PE, Dixon NE (1996) Stable high-copy-number of bacteriophage lambda promoter vectors for overproduction of proteins in Escherichia coli. Gene 176:49–53Google Scholar
  59. Lowman HB, Bina M (1990) Temperature-mediated regulation and downstream inducible selection for controlling gene expression from the bacteriophage lambda pL promoter. Gene 96:133–136Google Scholar
  60. Lutz R, Bujard H (1997) Independent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O and AraC7l1–l2 regulatory elements. Nucleic Acids Res 25:1203–1210Google Scholar
  61. Makrides SC (1996) Strategies for achieving high level expression of genes in Escherichia coli. Microbiol Rev 60:512–538Google Scholar
  62. Malten M, Hollmann R, Deckwer WD, Jahn D (2005) Production and secretion of recombinant Leuconostoc mesenteroides dextransucrase DsrS in Bacillus megaterium. Biotechnol Bioeng 89:206–218Google Scholar
  63. Margot P, Karamata D (1996) The wrpA gene Bacillus subtilis 168 expressed during exponential growth, encodes a cell-wall-associated protease. Microbiology 142:3437–3444CrossRefGoogle Scholar
  64. Mayer M (1995) A new set of useful cloning and expression vectors derived from pBlueScript. Gene 163:41–46Google Scholar
  65. McKenzie T, Hoshino T, Tanaka T, Sueoka N (1986) The nucleotide sequence of pUB110: some salient features in relation to replication and its regulation. Plasmid 15:93–103Google Scholar
  66. Meinhardt F, Stahl U, Eveling W (1989) Highly efficient expression of homologous and heterologous genes in Bacillus megaterium. Appl Microbiol Biotechnol 30:343–350Google Scholar
  67. Menart V, Jevsevar S, Vilar M, Trobis A, Pavko A (2003) Constitutive versus thermoinducible expression of heterologous proteins in Escherichia coli based on strong PR,PL promoters from phage lambda. Biotechnol Bioeng 83:181–190Google Scholar
  68. Mergulhao FJ, Monteiro GA (2004) Secretion capacity limitations of the Sec pathway in Escherichia coli. J Microb Biotechnol 14:128–133Google Scholar
  69. Mergulhao FJ, Summers DK, Monteiro GA (2005) Recombinant protein secretion in Escherichia coli. Biotechnol Adv 23:177–202Google Scholar
  70. Miroux B, Walker JE (1996) Over-production of proteins in Escherichia coli: Mutant hosts that allow synthesis of some membrane proteins and globular proteins at high level. J Mol Biol 260:289–298Google Scholar
  71. Moffatt BA, Studier FW (1987) T7 lysozyme inhibits transcription by T7 RNA polymerase. Cell 49:221–227Google Scholar
  72. Murashima K, Chen C-L, Kosugi A, Tamaru Y, Doi RH, Wong S-L (2002) Heterologous production of Clostridium cellulovorans engB, using protease-deficient Bacillus subtilis, and preparation of active recombinant cellulosomes. J Bacteriol 184:76–81Google Scholar
  73. Nakamura K, Furusato T, Shiroza T, Yamane K (1985) Stable hyper-production of Escherichia coli β-lactamase by Bacillus subtilis grown on a 0.5 M succinate-medium using a B. subtilis α-amylase secretion vector. Biochem Biophys Res Commun 128:601–606CrossRefGoogle Scholar
  74. Olmos-Soto J, Contreras-Flores R (2003) Genetic system constructed to overproduce and secrete proinsulin in Bacillus subtilis. Appl Microbiol Biotechnol 62:369–373Google Scholar
  75. Palva I (1982) Molecular cloning of alpha-amylase gene from Bacillus amyloliquefaciens and its expression in B. subtilis. Gene 19:81–87Google Scholar
  76. Palva I, Lehtovaara P, Kaariainen L, Sibakov M, Cantell K, Schein CH, Kashiwagi K, Weissmann C (1983) Secretion of interferon by Bacillus subtilis. Gene 22:229–235Google Scholar
  77. Pan SH, Malcolm BA (2000) Reduced background expression and improved plasmid stability with pET vectors in BL21 (DE3). Biotechniques 29:1234–1238Google Scholar
  78. Petsch D, Anspach FB (2000) Endotoxin removal from protein solutions. J Biotechnol 76:97–119Google Scholar
  79. Phillips TA, Van Bogelen RA, Neidhardt FC (1984) lon gene product of Escherichia coli is a heat-shock protein. J Bacteriol 159:283–287Google Scholar
  80. Polisky B, Bishop RJ, Gelfand DH (1976) A plasmid cloning vehicle allowing regulated expression of eukaryotic DNA in bacteria. Proc Natl Acad Sci USA 73:3900–3904Google Scholar
  81. Puyet A, Sandoval H, Lopez P, Aguilar A, Martin JF, Espinosa M (1987) A simple medium for rapid regeneration of Bacillus subtilis protoplasts transformed with plasmid DNA. FEMS Microbiol Lett 40:1–5Google Scholar
  82. Quick M, Wright EM (2002) Employing Escherichia coli to functionally express, purify, and characterize a human transporter. Proc Natl Acad Sci USA 99:8597–8601Google Scholar
  83. Ritz D, Lim J, Reynolds CM, Poole LB, Beckwith J (2001) Conversion of a peroxiredoxin into a disulfide reductase by a triplet repeat expansion. Science 294:158–160Google Scholar
  84. Rosenberg HF (1998) Isolation of recombinant secretory proteins by limited induction and quantitative harvest. Biotechniques 24:188–191Google Scholar
  85. Rygus T, Hillen W (1991) Inducible high-level expression of heterologous genes in Bacillus megaterium using the regulatory elements of xylose-utilization operon. Appl Microbiol Biotechnol 35:594–599Google Scholar
  86. Rygus T, Scheler A, Allmansberger R, Hillen W (1991) Molecular cloning, structure, promoters and regulatory elements for transcription of the Bacillus megaterium encoded regulon for xylose utilization. Arch Microbiol 155:535–542Google Scholar
  87. Sagiya Y, Yamagata H, Udaka S (1994) Direct high-level secretion into the culture medium of tuna growth hormone in a biologically active form by Bacillus brevis. Appl Microbiol Biotechnol 42:358–363Google Scholar
  88. Schmidt FR (2004) Recombinant expression systems in the pharmaceutical industry. Appl Microbiol Biotechnol 65:363–372Google Scholar
  89. Schneider JC, Jennings AF, Mun DM, McGovern PM, Chew LC (2005) Auxotrophic markers pyrF and proC can replace antibiotic markers on protein production plasmids in high-cell-density Pseudomonas fluorescens fermentation. Biotechnol Prog 21:343–348Google Scholar
  90. Shiga Y, Maki M, Ohta T, Tokishita S, Okamoto A, Tsukagoshi N, Udaka S, Konishi A, Kodama Y, Ejima D, Matsui H, Yamagata H (2000) Efficient production of N-terminally truncated biologically active human interleukin-6 by Bacillus brevis. Biosci Biotechnol Biochem 64:665–669Google Scholar
  91. Shokri A, Sande’n AM, Larsson G (2003) Cell and process design for targeting of recombinant protein into the culture medium of Escherichia coli. Appl Microbiol Biotechnol 60:654–664Google Scholar
  92. Singh SM, Panda AK (2005) Solubilization and refolding of bacterial inclusion body proteins. J Biosci Bioeng 99:303–310Google Scholar
  93. Skerra A (1994) Use of the tetracycline promoter for the tightly regulated production of a murine antibody fragment in Escherichia coli. Gene 151:131–135Google Scholar
  94. Stahl ML, Ferrari E (1984) Replacement of the Bacillus subtilis subtilisin structural gene with an in vitro derived deletion mutation. J Bacteriol 158:411–418Google Scholar
  95. Studier FW (1991) Use of bacteriophage T7 lysozyme to improve an inducible T7 expression system. J Mol Biol 219:37–44Google Scholar
  96. Studier FW, Moffatt BA (1986) Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol 189:113–130Google Scholar
  97. Takimura Y, Kato M, Ohta T, Yamagata H, Udaka S (1997) Secretion of human interleukin-2 in biologically active form by Bacillus brevis directly into culture medium. Biosci Biotechnol Biochem 61:1858–1861CrossRefGoogle Scholar
  98. Tjalsma H, Bolhuis A, Jongbloed JD, van Dijl JM (2000) Signal peptide-dependent protein transport in Bacillus subtilis: a genome-based survey of the secretome. Microbiol Mol Biol Rev 64:515–547Google Scholar
  99. Udaka S, Yamagata H (1993) High-Level secretion of heterologous proteins by Bacillus brevis. Methods Enzymol 217:23–33CrossRefGoogle Scholar
  100. Ulmanen K, Lundstrom P, Lehtovaara P, Sarvas M, Ruohonen M, Palva I (1985) Transcription and translation of foreign genes in Bacillus subtilis by the aid of a secretion vector. J Bacteriol 162:176–182Google Scholar
  101. Umelo-Njaka E, Nomellini JF, Yim H, Smit J (2001a) Development of small high-copy-number plasmid vectors for gene expression in Caulobacter crescentus. Plasmid 46:37–46Google Scholar
  102. Umelo-Njaka E, Nomellini JF, Bingle WH, Glasier LG, Irvin RT, Smit J (2001b) Expression and testing of Pseudomonas aeruginosa vaccine candidate proteins prepared with the Caulobacter crescentus S-layer protein expression system. Vaccine 19:1406–14015Google Scholar
  103. Vary PS (1994) Prime time for Bacillus megaterium. Microbiology 140:1001–1013CrossRefGoogle Scholar
  104. Vorobjeva IP, Khmel LA, Alfödi L (1980) Transformation of Bacillus megaterium protoplasts by plasmid DNA. FEMS Microbiol Lett 7:261–263CrossRefGoogle Scholar
  105. Wang RF, Kushner SR (1991) Construction of versatile low-copy-number vectors for cloning, sequencing and gene expression in Escherichia coli. Gene 100:195–199Google Scholar
  106. Wang B, Yang X, Wu R (1993) High-level production of the mouse epidermal growth factor in a Bacillus brevis expression system. Protein Expr Purif 4:223–231Google Scholar
  107. Westers L, Westers H, Quax WJ (2004) Bacillus subtilis as a cell factory for pharmaceutical proteins: a biotechnological approach to optimize the host organism. Biochim Biophys Acta 1694:299–310Google Scholar
  108. Wilms B, Hauck A, Reuss M, Syldatk C, Mattes R, Siemann M, Altenbuchner J (2001) High-cell-density fermentation for production of l-N-Carbamoylase using an expression system based on the Escherichia coli rhaBAD promoter. Biotechnol Bioeng 73:95–103Google Scholar
  109. Wong S-L, Kawamura F, Doi RH (1986) Use of the Bacillus subtilis subtilisin signal peptide for efficient secretion of TEM β-lactamase during growth. J Bacteriol 168:1005–1009Google Scholar
  110. Wu S-C, Wong S-L (2002) Engineering of a Bacillus subtilis strain with adjustable levels of intracellular biotin for secretory production of functional streptavidin. Appl Environ Microbiol 68:1102–1108Google Scholar
  111. Wu S-C, Wong S-L (2005) Engineering soluble monomeric streptavidin with reversible biotin binding capability. J Biol Chem 280:23225–23231Google Scholar
  112. Wu X-C, Lee W, Tran L, Wong S-L (1991) Engineering a Bacillus subtilis expression-secretion system with a strain deficient in six extracellular proteases. J Bacteriol 173:4952–4958Google Scholar
  113. Wu S-C, Yeung JC, Duan Y, Ye R, Szarka SJ, Habibi HR, Wong SL (2002) Functional production and characterization of a fibrin-specific single-chain antibody fragment from Bacillus subtilis: effects of molecular chaperones and a wall-bound protease on antibody fragment production. Appl Environ Microbiol 68:3261–3269Google Scholar
  114. Yamagata H, Nakahama K, Suzuki Y, Kakinuma A, Tsukagoshi N, Udaka S (1989) Use of Bacillus brevis for efficient synthesis and secretion of human epidermal growth factor. Proc Natl Acad Sci USA 86:3589–3593Google Scholar
  115. Yang S, Huang H, Zhang R, Huang X, Li S, Yuan Z (2001) Expression and purification of extracellular penicillin G acylase in Bacillus subtilis. Protein Expr Purif 21:60–64Google Scholar
  116. Ye R, Kim JH, Kim BG, Szarka S, Sihota E, Wong S-L (1999) High-level secretory production of intact, biologically active staphylokinase from Bacillus subtilis. Biotechnol Bioeng 62:87–96Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.IBA GmbHGöttingenGermany

Personalised recommendations