Applied Microbiology and Biotechnology

, Volume 71, Issue 5, pp 587–597 | Cite as

Bacterial acetone and butanol production by industrial fermentation in the Soviet Union: use of hydrolyzed agricultural waste for biorefinery

  • V. V. Zverlov
  • O. Berezina
  • G. A. Velikodvorskaya
  • W. H. SchwarzEmail author


Clostridial acetone–butanol fermentation from renewable carbohydrates used to be the largest biotechnological process second only to yeast ethanol fermentation and the largest process ever run under sterile conditions. With the rising prices for mineral oil, it has now the economical and technological potential to replace petrochemistry for the production of fuels from renewable resources. Various methods for using non-food biomass such as cellulose and hemicellulose in agricultural products and wastes have been developed at laboratory scale. To our knowledge, the AB plants in Russia were the only full-scale industrial plants which used hydrolyzates of lignocellosic waste for butanol fermentation. These plants were further developed into the 1980s, and the process was finally run in a continual mode different from plants in Western countries. A biorefinery concept for the use of all by-products has been elaborated and was partially put into practice. The experience gained in the Soviet Union forms a promising basis for the development of modern large-scale processes to replace a considerable fraction of the current chemical production of fuel for our future needs on a sustainable basis.


Fermentation Butanol Biogas Lignocellulosic Biomass Solvent Production 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors thank D. Antoni, H. Bahl, R. Gapes, R. Igelspacher, D. Jones, E. Kashket, J. Puls, D. Schieder, W. L. Staudenbauer, and S. Yarotsky for numerous comments, corrections, suggestions, and critically reading the manuscript. The support of an INTAS-YSF fellowship to OB is gratefully acknowledged.


  1. Andrade JC, Vasconcelos I (2003) Continuous cultures of Clostridium acetobutylicum: culture stability and low-grade glycerol utilisation. Biotechnol Lett 25:121–125CrossRefGoogle Scholar
  2. Andreesen JR, Gottschalk G (1969) The occurrence of a modified Entner–Doudoroff pathway in Clostridium aceticum. Arch Mikrobiol 69:160–170CrossRefGoogle Scholar
  3. Awang GM, Jones GA, Ingledew WM (1988) The acetone–butanol–ethanol fermentation. Crit Rev Microbiol 15(Suppl 1):33–67CrossRefGoogle Scholar
  4. Bahl H, Andersch W, Gottschalk G (1982) Continuous production of acetone and butanol by Clostridium acetobutylicum in a two-stage phosphate limited chemostat. Eur J Appl Microbiol Biotechnol 15:201–205CrossRefGoogle Scholar
  5. Claassen PAM, van Lier JB, Lopez-Contreras AM, van Niel EWJ, Sijtsma L, Stams AJM, de Vries SS, Weutshuis RA (1999) Utilisation of biomass for the supply of energy carriers. Appl Microbiol Biotechnol 52:741–755CrossRefGoogle Scholar
  6. Collins MD, Lawson PA, Willems A, Cordoba JJ, Fernandez-Garayzabal J, Garcia P, Cai J, Hippe H, Farrow JAE (1994) The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int J Syst Bacteriol 44:812–826Google Scholar
  7. Cornillot E, Nair RV, Papoutsakis ET, Soucaille P (1997) The genes for butanol and acetone formation in Clostridium acetobutylicum ATCC824 reside on a large plasmid whose loss leads to degeneration of the strain. J Bacteriol 179:5442–5447Google Scholar
  8. Dale BE (1987) Lignocellulose conversion and the future of fermentation biotechnology. Trends Biotechnol 5:287–291CrossRefGoogle Scholar
  9. Demain AL, Newcomb M, Wu JHD (2005) Cellulase, clostridia, and ethanol. Microbiol Mol Biol Rev 69:124–154CrossRefGoogle Scholar
  10. Dürre P (1998) New insights and novel developments in clostridial acetone/butanol/ isopropanol fermentation. Appl Microbiol Biotechnol 49:639–648CrossRefGoogle Scholar
  11. Dürre P, Bohringer M, Nakotte S, Schaffer S, Thormann K, Zickner B (2002) Transcriptional regulation of solventogenesis in Clostridium acetobutylicum. J Mol Microbiol Biotechnol 4:295–300Google Scholar
  12. Ezeji TC, Groberg M, Qureshi N, Blaschek HP (2003) Continuous production of butanol from starch-based packing peanuts. Appl Biochem Biotechnol 108:375–382CrossRefGoogle Scholar
  13. Ezeji TC, Karcher PM, Qureshi N, Blaschek HP (2005) Improving performance of a gas stripping-based recovery system to remove butanol from Clostridium beijerinckii fermentation. Bioprocess Biosyst Eng 27:207–214CrossRefGoogle Scholar
  14. Galbe M, Zacchi G (2002) A review of the production of ethanol from softwood. Appl Microbiol Biotechnol 59:618–628CrossRefGoogle Scholar
  15. Gapes JR (2000a) The economics of acetone–butanol fermentation: theoretical and market considerations. J Mol Microbiol Biotechnol 2:27–32Google Scholar
  16. Gapes JR (2000b) The history of the acetone–butanol project in Austria. J Mol Microbiol Biotechnol 2:5–8Google Scholar
  17. Girbal L, Soucaille P (1994) Regulation of Clostridium acetobutylicum metabolism as revealed by mixed-substrate steady-state continuous cultures: role of NADH/NAD ratio and ATP pool. J Bacteriol 176:6433–6438Google Scholar
  18. Gottschal JC, Morris JG (1982) Continuous production of acetone and butanol by Clostridium acetobutylicaum growing in turbidostat culture. Biotechnol Lett 4:477–482CrossRefGoogle Scholar
  19. Greene N, Celik FE, Dale B, Jackson M, Jayawardhana K, Jin H, Larson ED, Laser M, Lynd L, MacKenzie D, Mark J, McBride J, McLaughlin S, Saccardi D (2004) Growing energy. How biofuels can help end America’s oil dependence. NRDC, USAGoogle Scholar
  20. Groot et al (1992) Integration of pervaporation and continuous butanol fermentation with immobilized cells. Chem Eng J 46:B1–B10Google Scholar
  21. Haggstrom L (1985) Acetone–butanol fermentation and its variants. Biotechnol Adv 3:13–28CrossRefGoogle Scholar
  22. Hazlewood GP, Gilbert HJ (1993) Xylan and cellulose utilization by the clostridia. Biotechnology 25:311–341Google Scholar
  23. Huang WC, Ramey DE, Yang ST (2004) Continuous production of butanol by Clostridium acetobutylicum immobilized in a fibrous bed bioreactor. Appl Biochem Biotechnol 113–116:887–898CrossRefGoogle Scholar
  24. Iarovenko VL, Nakhmanovich BM, Shcheblykin NP, Senkevich VV (1960) A study of continuous acetone butylic fermentation caused by Clostridium acetobutylicum. Mikrobiologiia 29:581–586Google Scholar
  25. Jones DT, Keis S (1995) Origins and relationships of industrial solvent-producing clostridial strains. FEMS Microbiol Rev 17:223–232CrossRefGoogle Scholar
  26. Jones DT, Woods DR (1986) Acetone–butanol fermentation revisited. Microbiol Rev 50:484–524Google Scholar
  27. Kashket ER, Cao ZY (1995) Clostridial strain degeneration. FEMS Microbiol Rev 17:307–315CrossRefGoogle Scholar
  28. Keis S, Bennett CF, Ward VK, Jones DT (1995) Taxonomy and phylogeny of industrial solvent-producing bacteria. Int J Syst Bacteriol 45:693–705CrossRefGoogle Scholar
  29. Keis S, Shaheen R, Jones DT (2001) Emended descriptions of Clostridium acetobutylicum and Clostridium beijerinckii, and descriptions of Clostridium saccharoperbutylacetonicum sp. nov. and Clostridium saccharobutylicum sp. nov. Int J Syst Evol Microbiol 51:2095–2103Google Scholar
  30. Langlykke AF, van Lanen JM, Fraser DR (1948) Butyl alcohol from xylose saccharification liquors from corn-cobs. Ind Eng Chem 40:1716–1719CrossRefGoogle Scholar
  31. Logotkin IS (1958) Technology of acetone–butanol production (in Russian). Pisshprom Isdat, MoscowGoogle Scholar
  32. Lopez-Contreras AM, Gabor K, Martens AA, Renckens BA, Claassen PA, Van Der Oost J, De Vos WM (2004) Substrate-induced production and secretion of cellulases by Clostridium acetobutylicum. Appl Environ Microbiol 70:5238–5243CrossRefGoogle Scholar
  33. Lynd LR, Cushman JH, Nichols RJ, Wyman CE (1991) Fuel ethanol from cellulosic biomass. Science 251:1318–1322CrossRefGoogle Scholar
  34. Lynd LR, Wyman CE, Gerngross TU (1999) Biocommodity engineering. Biotechnol Prog 15:777–793CrossRefGoogle Scholar
  35. Lynd LR, Zyl WH, McBride JE, Laser M (2005) Consolidated bioprocessing of cellulosic biomass: an update. Curr Opin Biotechnol 16:577–583CrossRefGoogle Scholar
  36. Maddox IS, Steiner E, Hirsch S, Wessner S, Gutierrez NA, Gapes JR, Schuster KC (2000) The cause of “acid crash” and “acidogenic fermentations” during the batch acetone–butanol–ethanol (AB-) fermentation process. J Mol Microbiol Biotechnol 2:95–100Google Scholar
  37. Montoya D, Arévalo C, Gonzales S, Aristizabal F, Schwarz WH (2001) New solvent-producing Clostridium sp. strains, hydrolyzing a wide range of polysaccharides, are closely related to Clostridium butyricum. J Ind Microbiol Biotechnol 27:329–335CrossRefGoogle Scholar
  38. Mutschlechner O, Swoboda H, Gapes JR (2000) Continuous two-stage AB-fermentation using Clostridium beijerinckii NRRL B592 operating with a growth rate in the first stage vessel close to its maximal value. J Mol Microbiol Biotechnol 2:101–105Google Scholar
  39. Nakhmanovich BM, Shcheblykina NA (1959) Fermentation of pentoses of corn cob hydrolyzates by Clostridium acetobutylicum. Mikrobiologiya 28:99–104Google Scholar
  40. Nativel F, Pourquie J, Ballerini D, Vandecasteele JP, Renault P (1992) The biotechnology facilities at Soustons for biomass conversion. Int J Sol Energy 11:219–229Google Scholar
  41. Nimcevic D, Gapes JR (2000) The acetone–butanol fermentation in pilot plant and pre-industrial scale. J Mol Microbiol Biotechnol 2:15–20Google Scholar
  42. Nölling J et al (2001) Genome sequence and comparative analysis of the solvent-producing bacterium Clostridium acetobutylicum. J Bacteriol 183:4823–4838CrossRefGoogle Scholar
  43. Riehm T (1962) Holzzucker und Holzzuckerlösungen. In: Die Hefen, vol II. Carl Hanser Verlag, Nürnberg, pp 82–113Google Scholar
  44. Sabathe F, Soucaille P (2003) Characterization of the CipA scaffolding protein and in vivo production of a minicellulosome in Clostridium acetobutylicum. J Bacteriol 185:1092–1096CrossRefGoogle Scholar
  45. Sabathe F, Belaich A, Soucaille P (2002) Characterization of the cellulolytic complex (cellulosome) of Clostridium acetobutylicum. FEMS Microbiol Lett 217:15–22CrossRefGoogle Scholar
  46. Schuster KC, Goodacre R, Gapes JR, Young M (2001) Degeneration of solventogenic Clostridium strains monitored by Fourier transform infrared spectroscopy of bacterial cells. J Ind Microbiol Biotechnol 27:314–321CrossRefGoogle Scholar
  47. Schwarz WH (2001) The cellulosome and cellulose degradation by anaerobic bacteria. Appl Microbiol Biotechnol 56:634–649CrossRefGoogle Scholar
  48. Schwarz WH, Gapes R (2006) Butanol—rediscovering a renewable fuel. BioWorld Europe 1:16–19Google Scholar
  49. Shaheen R, Shirley M, Jones DT (2000) Comparative fermentation studies of industrial strains belonging to four species of solvent-producing clostridia. J Mol Microbiol Biotechnol 2:115–124Google Scholar
  50. Stout BA (1982) Conversion of biomass to fuel and chemical raw material. Experientia 38:145–151CrossRefGoogle Scholar
  51. Terracciano JS, Kashket ER (1986) Intracellular conditions required for initiation of solvent production by Clostridium acetobutylicum. Appl Environ Microbiol 52:86–91Google Scholar
  52. Thomas SM, DiCosimo R, Nagarajan V (2002) Biocatalysts: applications and potentials for the chemical industry. Trends Biotechnol 20:238–242CrossRefGoogle Scholar
  53. Waksman S, Kirsh D (1933) Butyric acids and butyl alcohol fermentation of hemi-cellulose and starch-rich materials. Ind Eng Chem 25:1036–1041CrossRefGoogle Scholar
  54. Wilkinson SR, Young M (1993) Wide diversity of genome size among different strains of Clostridium acetobutylicum. J Gen Microbiol 139:1069–1076Google Scholar
  55. Wilkinson SR, Young DI, Morris JG, Young M (1995) Molecular genetics and the initiation of solventogenesis in Clostridium beijerinckii (formerly Clostridium acetobutylicum) NCIMB 8052. FEMS Microbiol Rev 17:275–285CrossRefGoogle Scholar
  56. Wyman CE (2001) Twenty years of trials, tribulations, and research progress in bioethanol technology: selected key events along the way. Appl Biochem Biotechnol 91:5–21CrossRefGoogle Scholar
  57. Yarovenko VL, Nachmanovich BM, Shcheblykin NP (1962) Two-directional flow scheme of continuous acetone–butanol fermentation. Spiritovaya Promishlinost 1:11–15, (in Russian)Google Scholar
  58. Yarovenko VL, Nachmanovich BM, Shcheblykin NP, Senkevich VV (1963) Continuous fermentation in acetone–butanol production. Kabardino-Balkariya Publishers, Nalchik (in Russian)Google Scholar
  59. Yu EKC, Deschatelet L, Saddler JN (1984) The bioconversion of wood hydrolyzates to butanol and butanediol. Biotechnol Lett 6:327–332CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • V. V. Zverlov
    • 1
    • 2
  • O. Berezina
    • 2
  • G. A. Velikodvorskaya
    • 2
  • W. H. Schwarz
    • 1
    Email author
  1. 1.Institute for MicrobiologyTechnische Universität MünchenFreisingGermany
  2. 2.Institute of Molecular GeneticsRussian Academy of ScienceMoscowRussia

Personalised recommendations