Microbial degradation of styrene: biochemistry, molecular genetics, and perspectives for biotechnological applications

  • Aisling Mooney
  • Patrick G. Ward
  • Kevin E. O’ConnorEmail author


Large quantities of the potentially toxic compound styrene are produced and used annually by the petrochemical and polymer-processing industries. It is as a direct consequence of this that significant volumes of styrene are released into the environment in both the liquid and the gaseous forms. Styrene and its metabolites are known to have serious negative effects on human health and therefore, strategies to prevent its release, remove it from the environment, and understand its route of degradation were the subject of much research. There are a large number of microbial genera capable of metabolizing styrene as a sole source of carbon and energy and therefore, the possibility of applying these organisms to bioremediation strategies was extensively investigated. From the multitude of biodegradation studies, the application of styrene-degrading organisms or single enzymes for the synthesis of value-added products such as epoxides has emerged.


Styrene Phenylacetic Acid Styrene Oxide Phenylacetaldehyde Styrene Epoxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Alonso S, Bartolome-Martin D, Alamo del M, Diaz E, Garcia JL, Perera J (2003a) Genetic characterisation of the styrene lower catabolic pathway of Pseudomonas sp. strain Y2. Gene 319:71–83CrossRefGoogle Scholar
  2. Alonso S, Navarro-Llorens JM, Tormo A, Perera J (2003b) Construction of a bacterial biosensor for styrene. J Biotechnol 102:301–306CrossRefGoogle Scholar
  3. Arnold M, Reittu A, von Wright A, Martikainen PJ, Suihko ML (1997) Bacterial degradation of styrene in waste gases using a peat filter. Appl Microbiol Biotechnol 48:738–744CrossRefGoogle Scholar
  4. Baggi G, Boga MM, Catelani D, Galli E, Treccani V (1983) Styrene catabolism by a strain of Pseudomonas fluorescens. Syst Appl Microbiol 4:141–147Google Scholar
  5. Baikalov I, Schroder M, Kaczor-Grzeskowiak M, Grzeskowiak K, Gunsalus RP, Dickerson RE (1996) Structure of the Escherichia coli response regulator NarL. Biochemistry 35:11053–11061CrossRefGoogle Scholar
  6. Beltrametti F, Marconi AM, Bestetti G, Colombo C, Galli E, Ruzzi M, Zennaro E (1997) Sequencing and functional analysis of styrene catabolism genes from Pseudomonas fluorescens ST. Appl Environ Microbiol 63:2232–2239Google Scholar
  7. Bernasconi S, Orsini F, Sello G, Colmegna A, Galli E, Bestetti G (2000) Bioconversion of substituted styrenes to the corresponding enantiomerically pure epoxides by a recombinant Escherichia coli strain. Tetrahedron Lett 41:9157–9161CrossRefGoogle Scholar
  8. Bestetti G, Galli E, Ruzzi M, Baldacci G (1984) Molecular characterisation of a plasmid from Pseudomonas fluorescens involved in styrene degradation. Plasmid 12:181–188CrossRefGoogle Scholar
  9. Choi J, Lee SY (2000) Economic considerations in the production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by bacterial fermentation. Appl Environ Microbiol 53:646–649Google Scholar
  10. Coschigano PW, Young LY (1997) Identification and sequence analysis of two regulatory genes involved in anaerobic toluene metabolism by strain T1. Appl Environ Microbiol 63:652–660Google Scholar
  11. Cox HHJ, Moerman RE, Van Baalen S, Van Heiningen WNM, Doddema HJ, Harder W (1997) Performance of a styrene degrading biofilter containing the yeast Exophiala jeanselmei. Biotechnol Bioeng 62:216–224CrossRefGoogle Scholar
  12. Cripps RE, Trudgill PW, Whateley JG (1978) The metabolism of 1-phenylethanol and acetophenone by Norcardia T5 and an Arthrobacter sp. Eur J Biochem 86:175–186CrossRefGoogle Scholar
  13. Djeribi R, Dezenclos T, Pauss A, Lebeault JM (2005) Removal of styrene from waste gas using a biological trickling filter. Eng Life Sci 5(5):450–457CrossRefGoogle Scholar
  14. Ferrandez A, Minambres B, Garcia B, Olivera ER, Luengo JM, Garcia JL, Diaz E (1998) Catabolism of phenylacetic acid in Escherichia coil. J Biol Chem 273:2594–25986CrossRefGoogle Scholar
  15. Garcia B, Olivera ER, Minambres B, Fernandez-valverde M, Canedo LM, Prieto MA, Garcia JL, Martinez M, Luengo JM (1999) Novel biodegradable aromatic plastics from a bacterial source. J Biol Chem 274:29228–29241CrossRefGoogle Scholar
  16. Guillemin MP, Berode M (1988) Biological monitoring of styrene: a review. Am Ind Hyg Assoc J 49:497–505Google Scholar
  17. Hartmans S (1995) Microbial degradation of styrene. In: Biotransformations: microbiological degradation of health risk compounds. Elsevier Science, pp 227–238Google Scholar
  18. Hartmans S, Smits JP, van der Werf MJ, Volkering F, deBont JAM (1989) Metabolism of styrene oxide and 2-phenylethanol in the styrene degrading Xanthobacter strain 124X. Appl Environ Microbiol 55:2850–2855Google Scholar
  19. Hartmans S, van der Werf MJ, deBont JAM (1990) Bacterial degradation of styrene involving a novel flavin adenine dinucleotide dependent styrene monooxygenase. Appl Environ Microbiol 56:1347–1351Google Scholar
  20. Huisman GW, Woink E, Konink G, Previsting H, Witholt B (1992) Synthesis of poly(3-hydroxyalkanoates) by mutant and recombinant Pseudomonas strains, encoding the alkane hydroxylase enzyme system. Appl Microbiol Biotechnol 38:1–5CrossRefGoogle Scholar
  21. Itoh N, Yoshida K, Okada K (1996) Isolation and identification of styrene-degrading Corynebacterium strains, and their styrene metabolism. Biosci Biotechnol Biochem 63:3783–3788Google Scholar
  22. Itoh N, Morihama R, Wang J, Okada K, Mizuguchi N (1997) Purification and characterization of phenylacetaldehyde reductase from a styrene-assimilating Corynebacterium strain, ST-10. Appl Environ Microbiol 63:3783–3788Google Scholar
  23. Iwande A, Jang JH, Hirai M, Shoda M (2005) Enhancement of styrene removal by Pseudomonas sp. SR-5 in mixed culture with a benzoic acid-degrading bacterium in biofilter. Environ Technol 26(8):941–949CrossRefGoogle Scholar
  24. Jang JH, Hirai M, Shoda M (2004) Styrene degradation by Pseudomonas sp. SR-5 in biofilters with organic and inorganic packing materials. Appl Microbiol Biotechnol 65:349–355CrossRefGoogle Scholar
  25. Jang JH, Hirai M, Shoda M (2005a) Performance of a styrene-degrading biofilter inoculated with Pseudomonas sp. SR-5. J Biosci Bioeng 100(3):297–302CrossRefGoogle Scholar
  26. Jang JH, Hirai M, Shoda M (2005b) Effect of shutdown on styrene removal in a biofilter inoculated with Pseudomonas sp. SR-5. J Hazard Mater 30:297–302Google Scholar
  27. Jones BE, Dossonnet V, Kuster E, Hillen W, Deutscher J, Klevit RE (1997) Binding of the catabolite repressor protein CcpA to its DNA target is regulated by phosphorylation of its corepressor HPr. J Biol Chem 272:26530–26535CrossRefGoogle Scholar
  28. Juneson C, Ward OP, Singh A (2001) Microbial treatment of a styrene-contaminated air stream in a biofilter with high elimination capacities. J Ind Microbiol Biotech 26(4):196–202CrossRefGoogle Scholar
  29. Kessler B, Witholt B (2001) Factors involved in the regulatory network of polyhydroxyalkanoate metabolism. J Biotechnol 86:97–104CrossRefGoogle Scholar
  30. Lageveen RG, Huisman GW, Preustin H, Ketelaar P, Eggink G, Witholt B (1988) Formation of polyesters by Pseudomonas oleovorans: effect of substrates on formation and composition of poly-(R)-3-hydroxyalkanoates and poly-(R)-3-hydroxyalkenoates. Appl Environ Microbiol 54:2924–2931Google Scholar
  31. Lau PCK, Wang Y, Patel A, Labbe H, Bergeron H, Brousseau R, Konish Y, Rawlings M (1997) A bacterial basic region leucine zipper histidine kinase regulating toluene degradation. Proc Natl Acad Sci U S A 94:1453–1458CrossRefGoogle Scholar
  32. Leoni L, Ascenzi P, Bocedi A, Rampioni G, Castellini L, Zennaro E (2003) Styrene-catabolism regulation in Pseudomonas fluorescens ST: phosphorylation of StyR induces dimerization and cooperative DNA-binding. Biochem Biophys Res Commun 303:926–931CrossRefGoogle Scholar
  33. Leoni L, Rampioni G, Di Stefano V, Zennaro E (2005) Dual role of the response regulator StyR in styrene catabolism regulation. Appl Environ Microbiol 91:5411–5419CrossRefGoogle Scholar
  34. Lu C, Lin MR, Lin J (2001) Removal of styrene vapor from waste gases by a trickle-bed air biofilter. J Hazard Mater 82(3):233–245CrossRefGoogle Scholar
  35. Lu X, Zhang J, Wu Q, Chen GQ (2003) Enhanced production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) via manipulating the fatty acid-oxidation pathway in E. coli. FEMS Microbiol Lett 221:97–101CrossRefGoogle Scholar
  36. Malhautier LN, Khammar S, Bayle JL, Fanio (2005) Biofiltration of volatile organic compounds. Appl Microbiol Biotechnol 68:16–22CrossRefGoogle Scholar
  37. Marconi AM, Beltrametti F, Bestetti G, Solinas F, Ruzzi M, Galli E, Zennaro E (1996) Cloning and characterization of styrene catabolism genes from Pseudomonas fluorescens ST. Appl Environ Microbiol 62:121–127Google Scholar
  38. Marczynski B, Peel M, Baur X (2000) New aspects in genotoxic risk assessment of styrene exposure—a working hypothesis. Med Hypotheses 54:619–623CrossRefGoogle Scholar
  39. Martinez-Blanco H, Regleo A, Rodrigues-Aparicio LB, Luengo JM (1990) Purification and biochemical characterization of phenylacetyl-CoA ligase from Pseudomonas putida. A specific enzyme for the catabolism of phenylacetic acid. J Biol Chem 265:7084–7090Google Scholar
  40. McGrath M, Nieuwland J, Van Lith C (1999) Biofiltration of styrene and butylacetate at a dashboard manufacturer. Environ Prog 18:197–204CrossRefGoogle Scholar
  41. Milani M, Leoni L, Rampioni G, Zennaro E, Ascenzi P, Bolognesi M (2005) An active-like structure in the unphosphorylated StyR response regulator suggests a phosphorylation dependent allosteric activation mechanism. Structure 13:1289–1297CrossRefGoogle Scholar
  42. Mohamed ME, Ismail W, Heider J, Fuchs G (2002) Aerobic metabolism of phenylacetic acid in Azoarcus evansli. Arch Microbiol 178:180–192CrossRefGoogle Scholar
  43. Mooney A, O’Leary ND, Dobson ADW (2006) Cloning and functional characterisation of the styE gene, involved in styrene transport in Pseudomonas putida CA-3. Appl Environ Microbiol 72:1302–1309CrossRefGoogle Scholar
  44. Murata K, Araki S, Yokoyama K (1991) Assessment of the peripheral, central, and autonomic nervous system function in styrene workers. Am J Ind Med 20:775–784CrossRefGoogle Scholar
  45. Mutti A, Falzoi M, Romanelli MC, Bocchi MC, Ferroni C, Frandhini I (1988) Brain dopamine as a target for solvent toxicity: effects of some monocyclic aromatic hydrocarbons. Toxicology 49:77–82CrossRefGoogle Scholar
  46. Nishio T, Patel A, Wang Y, Lau PC (2001) Biotransformations catalyzed by cloned p-cymene monooxygenase from Pseudomonas putida F1. Appl Microbiol Biotechnol 55:321–325CrossRefGoogle Scholar
  47. Nothe C, Hartmans H (1994) Formation and degradation of styrene oxide stereoisomers by different microorganisms. Biocatalysis 10:219–225CrossRefGoogle Scholar
  48. O’Connor KE, Dobson ADW (1997) Microbial degradation of alkenylbenzenes. In: Sheehan D (ed) Methods in biotechnology, vol. 2: bioremediation protocols. Humana Press, Totowa, NJ, pp 275–282CrossRefGoogle Scholar
  49. O’Connor KC, Buckley CM, Hartmans S, Dobson ADW (1995) Possible regulatory role for nonaromatic carbon sources in styrene degradation by Pseudomonas putida CA-3. Appl Environ Microbiol 61:544–548Google Scholar
  50. O’Connor KE, Duetz W, Wind B, Dobson ADW (1996) The effect of nutrient limitation on styrene metabolism in Pseudomonas putida CA-3. Appl Environ Microbiol 62:3594–3599Google Scholar
  51. O’Leary ND, O’Connor KE, Deutz W, Dobson ADW (2001a) Biochemistry, genetics and physiology of microbial styrene degradation. FEMS Microbiol Rev 26:403–417CrossRefGoogle Scholar
  52. O’Leary ND, O’Connor KE, Deutz W, Dobson ADW (2001b) Transcriptional regulation of styrene degradation in Pseudomonas putida CA-3. Microbiology 147:973–979Google Scholar
  53. O’Leary ND, O’Connor KE, Ward P, Goff M, Dobson ADW (2005) Genetic characterisation of accumulation of polyhydroxyalkonate from styrene in Pseudomonas putida CA-3. Appl Environ Microbiol 71:4280–4378CrossRefGoogle Scholar
  54. Otto K, Hostetter K, Rothlisberger M, Witholt B, Schmid A (2004) Biochemical characterisation of StyAB from Pseudomonas sp. Strain VLB120 as a two-component flavin-diffusible monooxygenase. J Bacteriol 168:5292–5302CrossRefGoogle Scholar
  55. Paca J, Koutsky B, Maryska M, Halecky M (2001) Styrene degradation along the bed height of perlite biofilter. J Chem Technol Biotechnol 76:873–878CrossRefGoogle Scholar
  56. Panke S, Witholt B, Schmid A, Wubbolts MG (1998) Towards a biocatalyst for (S)-styrene oxide production: characterization of the styrene degradation pathway of Pseudomonas sp. strain VLB120. Appl Environ Microbiol 64:2032–2043Google Scholar
  57. Panke S, deLorenzo V, Kaiser A, Witholt B, Wubbolts MG (1999a) Engineering of a stable whole-cell biocatalyst capable of (S)-styrene oxide formation for continuous two-liquid-phase applications. Appl Environ Microbiol 65:5619–5623Google Scholar
  58. Panke S, Meyer A, Huber CM, Witholt B, Wubbolts MG (1999b) An alkane-responsive expression system for the production of fine chemicals. Appl Environ Microbiol 65:2324–2332Google Scholar
  59. Panke S, Wubbolts MG, Schmid A, Witholt B (2000) Production of enantiopure styrene oxide by recombinant Escherichia coli synthesizing a two-component styrene monooxygenase. Biotechnol Bioeng 69:91–100CrossRefGoogle Scholar
  60. Pao GM, Saier MH Jr (1995) Response regulators of bacterial signal transduction systems: selective domain shuffling during evolution. J Mol Evol 40:136–154CrossRefGoogle Scholar
  61. Parkinson JS, Kofoid EC (1992) Communication modules in bacterial signalling proteins. Annu Rev Genet 26:71–112CrossRefGoogle Scholar
  62. Pheonix P, Keane A, Patel A, Bergeron H, Ghoshal S, Lau PC (2003) Characterisation of a new solvent-responsive gene locus in Pseudomonas putida F1 and its functionalisation as a versatile biosensor. Environ Microbiol 5:1309–1327CrossRefGoogle Scholar
  63. Quinn B (1996) Pollution engineering. Company sends only 17 percent of waste off site. 1:35–38 (June)Google Scholar
  64. Ramsey BA, Saracovan I, Ramsey JA, Marchessault RH (1992) Effect of nitrogen limitation on long-side-chain poly-beta-hydroxyalkonate synthesis by Pseudomonas resinovorans. Appl Environ Microbiol 58:744–746Google Scholar
  65. Robinson VL, Wu T, Stock AM (2003) Structural analysis of the domain interface in DrrB, a response regulator of the OmpR/PhoB subfamily. J Bacteriol 185:4186–4194CrossRefGoogle Scholar
  66. Rebert CS, Hall TA (1994) The neuroepidemiology of styrene: a critical review of representative literature. Crit Rev Toxicol 24:S57–S106CrossRefGoogle Scholar
  67. Reizer J, Saier MH Jr (1997) Modular multidomain phosphoryl transfer proteins of bacteria. Curr Opin Struct Biol 7:407–415CrossRefGoogle Scholar
  68. Santos PM, Blatny JM, Bartolo ID, Valla S, Zennaro E (2000) Physiological analysis of the expression of the styrene degradation gene cluster in Pseudomonas fluorescens ST. Appl Environ Microbiol 66:1305–1310CrossRefGoogle Scholar
  69. Santos PM, Leoni L, Di Bartolo I, Zennaro E (2002) Integration host factor is essential for the optimal expression of the styABCD operon in Pseudomonas fluorescens ST. Res Microbiol 153:527–536CrossRefGoogle Scholar
  70. Schulze B, Wubbolts MG (1999) Biocatalysis for industrial production of fine chemicals. Curr Opin Biotechnol 10(6):609–615CrossRefGoogle Scholar
  71. Sheridan BA, Curran TP, Dodd VA (2002) Assessment of the influence of media particle size on the biofiltration of odorous exhaust ventilation air from a piggery facility. Bioresour Technol 84:129–143CrossRefGoogle Scholar
  72. Shirai K, Hisatsuka K (1979) Isolation and identification of styrene assimilating bacteria. Agric Biol Chem 43:1595–1596Google Scholar
  73. Smith MR (1994) The physiology of aromatic hydrocarbons degrading bacteria. In: Ratledge C (ed) Biochemistry of microbial degradation. Kluwer, Dordrecht, pp 347–378Google Scholar
  74. Smith FL, Sorial GA, Suidan MT, Breen AW, Biswas P, Brenner RC (1996) Development of two biomass control strategies for extended stable operation of highly efficient biofilters with high toluene loadings. Environ Sci Technol 30:1744–1751CrossRefGoogle Scholar
  75. Sorial GA, Smith FL, Suidan MT, Biswas P, Brenner RC (1995) Evaluation of trickle bed biofilter media for toluene removal. J Air Waste Manage Assoc 45:801–810Google Scholar
  76. Taylor BL, Zhulin IB (1999) PAS domains: internal sensors of oxygen, redox potential and light. Microbiol Mol Biol Rev 63:479–506Google Scholar
  77. Tobin KM, O’Connor KE (2005) Polyhydroxyalkonate accumulating diversity of Pseudomonas species utilising aromatic hydrocarbons. FEMS Microbiol Lett Dec 253(1):111–118CrossRefGoogle Scholar
  78. US Environmental Protection Agency (1999) Integrated risk information system (IRIS) on styrene. National Center for Environmental Assessment, Office of Research and Development, Washington, DC. Available at
  79. US Inventory of Toxic Compounds (2001) TRI92. Toxics release inventory public data. Office of Pollution Prevention and Toxics, US EPA, Washington, DC, 94. Available at
  80. Utkin IB, Yachimov MM, Matveeva LN, Kozlyak EI, Rogozhin IS, Solomon ZG, Bezborodov AM (1991) Degradation of styrene and ethylbenzene by Pseudomonas species Y2. FEMS Microbiol Lett 77:237–242CrossRefGoogle Scholar
  81. van der Walle GAM, Buisman GJH, Weusthuis RA, Eggink G (1999) Development of environmentally friendly coatings and paints using medium-chain-length poly(3-hydroxyalkanoates) as the polymer binder. Int J Biol Macromol 25:23–128CrossRefGoogle Scholar
  82. van der Walle GAM, de Koning GJM, Weusthuis RA, Eggink G (2001) Properties, modifications and applications of biopolyesters. Adv Biochem Eng Biotechnol 71:264–291Google Scholar
  83. Velasco A, Alonso S, Garcia JL, Perera J, Diaz E (1998) Genetic and functional analysis of the styrene catabolic cluster of Pseudomonas sp. strain Y2. J Bacteriol 180:1063–1071Google Scholar
  84. Ward PG, de Roo G, O’Connor KE (2005) Accumulation of polyhydroxyalkonate from styrene and phenylacetic acid by Pseudomonas putida CA-3. Appl Environ Microbiol 71:2046–2052CrossRefGoogle Scholar
  85. Ward P, Goff M, Donner M, Kaminsky W, O’Connor KE (2006) A two-step chemo-biotechnological conversion of polystyrene to a biodegradable thermoplastic. Environ Sci Technol 40(7):2433–2437CrossRefGoogle Scholar
  86. Warhurst AM, Fewson CA (1994) Microbial metabolism and biotransformation of styrene. J Appl Bacteriol 77:597–606Google Scholar
  87. Warhurst AM, Clarke KF, Hill RA, Holt RA, Fewson CA (1994) Metabolism of styrene by Rhodococcus rhodochrous NCIMB 13259. Appl Environ Microbiol 60:1137–1145Google Scholar
  88. Westblad C, Levindis YA, Richter H, Howard JB, Carlson J (2002) A study on toxic emissions from batch combustion of styrene. Chemosphere 49:395–412CrossRefGoogle Scholar
  89. Williams SF, Martin DP, Horowitz DM, Peoples OP (1999) PHA applications: addressing the price performance issue: I. Tissue engineering. Int J Biol Macromol 25:111–121CrossRefGoogle Scholar
  90. Wubbolts MG, Reuvekamp P, Witholt B (1994a) TOL plasmid-specified xylene oxygenase is a wide substrate range monooxygenase capable of olefin epoxidation. Enzyme Microb Technol 16:608–615CrossRefGoogle Scholar
  91. Wubbolts MG, Hoven J, Melgert B, Witholt B (1994b) Efficient production of optically active styrene epoxides in two-liquid phase cultures. Enzyme Microb Technol 16:887–894CrossRefGoogle Scholar
  92. Yoon IK, Park CH (2002) Effects of gas flow rate, inlet concentration and temperature on biofiltration of volatile organic compounds in a peat-packed biofilter. J Biosci Bioeng 93(2):165–169CrossRefGoogle Scholar
  93. Zilli M, Palazzi E, Sene L, Converti A, Del Borghi M (2001) Toluene and styrene removal from air in biofilters. Process Biochem 37:423–429CrossRefGoogle Scholar
  94. Zilli M, Converti A, Di Felice R (2003) Macrokinetic and quantitative microbial investigation on a bench-scale biofilter treating styrene polluted gaseous streams. Biotechnol Bioeng 5(83):29–39CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Aisling Mooney
    • 1
  • Patrick G. Ward
    • 1
  • Kevin E. O’Connor
    • 1
    Email author
  1. 1.Centre for Synthesis and Chemical Biology, School of Biomolecular and Biomedical Sciences, College of Life SciencesUniversity College DublinDublin 4Ireland

Personalised recommendations