Applied Microbiology and Biotechnology

, Volume 71, Issue 6, pp 881–891 | Cite as

Square-plate culture method allows detection of differential gene expression and screening of novel, region-specific genes in Aspergillus oryzae

  • Kumiko Masai
  • Jun-ichi Maruyama
  • Kazutoshi Sakamoto
  • Harushi Nakajima
  • Osamu Akita
  • Katsuhiko Kitamoto
Genomics and Proteomics


When grown on solid agar medium, the mycelium of a filamentous fungus, Aspergillus oryzae, forms three morphologically distinct regions: the tip (T), white (W), and basal (B) regions. In this study, we developed the square-plate culture method, a novel culture method that enabled the extraction of mRNA samples from the three regions and analyzed the differential gene expression of the A. oryzae mycelium in concert with the microarray technique. Expression of genes involved in protein synthesis was predominant in the T region; relative expression was, at most, six times higher in the T region compared to the other regions. Genes encoding hypothetical proteins were expressed at high levels in the W and B regions. In addition, genes coding transporters/permeases were predominantly transcribed in the B region. By analyzing the expression patterns of genes in the three regions, we demonstrated the dynamic changes in the regulation of gene expression that occur along the mycelium of filamentous fungi. Consequently, our study established a method to analyze and screen for region-specific genes whose function may be essential for morphogenesis and differentiation in filamentous fungi and whose traits may be beneficial to the biotechnology industry.


Filamentous Fungus Aspergillus Oryzae Cellulose Acetate Membrane Aerial Hypha Standard Saline Citrate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This study was supported in part by the Program for Promotion of Basic Research Activities for Innovative Biosciences (BRAIN). We also thank M. Arioka for critical reading of the manuscript and thoughtful discussions.

Supplementary material


  1. Adams TH, Wieser JK, Yu JH (1998) Asexual sporulation in Aspergillus nidulans. Microbiol Mol Biol Rev 62:35–54Google Scholar
  2. Akao T, Gomi K, Goto K, Okazaki N, Akita O (2002) Subtractive cloning of cDNA from Aspergillus oryzae differentially regulated between solid-state culture and liquid (submerged) culture. Curr Genet 41:275–281CrossRefGoogle Scholar
  3. Aguirre J, Ríos-Momberg M, Hewitt D, Hansberg W (2005) Reactive oxygen species and development in microbial eukaryotes. Trends Microbiol 13:111–118CrossRefGoogle Scholar
  4. Asgeirsdottir SA, Scholtmeijer K, Wessels JGH (1999) A sandwiched-culture technique for evaluation of heterologous protein production in a filamentous fungus. Appl Environ Microbiol 65:2250–2252Google Scholar
  5. Conesa A, Punt PJ, van Luijk N, van den Hondel CAMJJ (2001) The secretion pathway in filamentous fungi: a biotechnological view. Fungal Genet Biol 33:155–171CrossRefGoogle Scholar
  6. Gordon CL, Khalaj V, Ram AFJ, Archer DB, Brookman JL, Trinci APJ, Jeenes DJ, Donan JH, Wells B, Punt PJ, van den Hondel CAMJJ, Robson GD (2000) Glucoamylase: green fluorescent protein fusions to monitor protein secretion in Aspergillus niger. Microbiology 146:415–426Google Scholar
  7. Hölker U, Lenz J (2005) Solid-state fermentation—are there any biotechnological advantages? Curr Opin Microbiol 8:1–6CrossRefGoogle Scholar
  8. Ishi K, Maruyama J, Juvvadi PR, Nakajima H, Kitamoto K (2005) Visualizing nuclear migration during conidiophore development in Aspergillus nidulans and Aspergillus oryzae: multinucleation of conidia occurs through direct migration of plural nuclei from phialides and confers greater viability and early germination in Aspergillus oryzae. Biosci Biotechnol Biochem 69:747–754CrossRefGoogle Scholar
  9. Li D, Bobrowicz P, Wilkinson HH, Ebbole DJ (2005) A MAP kinase pathway essential for mating and contributing to vegetative growth in Neurospora crassa. Genetics 170:1091–1104CrossRefGoogle Scholar
  10. Loewith R, Hall MN (2004) TOR signaling in yeast: temporal and spatial control of cell growth. In: Hall MN, Raff M, Thomas G (eds) Cell growth: control of cell size. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, pp 139–165Google Scholar
  11. Machida M (2002) Progress of Aspergillus oryzae genomics. Adv Appl Microbiol 51:81–106CrossRefGoogle Scholar
  12. Machida M, Asai K, Sano M, Tanaka T, Kumagai T, Terai G, Kusumoto K, Arima T, Akita O, Kashiwagi Y, Abe K, Gomi K, Horiuchi H, Kitamoto K, Kobayashi T, Takeuchi M, Denning DW, Galagan JE, Nierman WC, Yu J, Archer DB, Bennett JW, Bhatnagar D, Cleveland TE, Fedorova ND, Gotoh O, Horikawa H, Hosoyama A, Ichinomiya M, Igarashi R, Iwashita K, Juvvadi PR, Kato M, Kato Y, Kin T, Kokubun A, Maeda H, Maeyama N, Maruyama J, Nagasaki H, Nakajima T, Oda K, Okada K, Paulsen I, Sakamoto K, Sawano T, Takahashi M, Takase K, Terabayashi Y, Wortman J, Yamada O, Yamagata Y, Anazawa H, Hata Y, Koide Y, Komori T, Koyama Y, Minetoki T, Suharnan S, Tanaka A, Isono K, Kuhara S, Ogasawara N, Kikuchi H (2005) Genome sequencing and analysis of Aspergillus oryzae. Nature 438:1157–1161CrossRefGoogle Scholar
  13. Maeda H, Sano M, Maruyama Y, Tanno T, Akao T, Totsuka Y, Endo M, Sakurada R, Yamagata Y, Machida M, Akita O, Hasegawa F, Abe K, Gomi K, Nakajima T, Iguchi Y (2004) Transcriptional analysis of genes for energy catabolism and hydrolytic enzymes in the filamentous fungus Aspegillus oryzae using cDNA microarrays and expressed sequence tags. Appl Microbiol Biotechnol 65:74–83CrossRefGoogle Scholar
  14. Martin DE, Soulard A, Hall MN (2004) TOR regulates ribosomal protein gene expression via PKA and the forkhead transcription factor FHL1. Cell 119:969–979CrossRefGoogle Scholar
  15. Masai K, Maruyama J, Nakajima H, Kitamoto K (2003) In vivo visualization of the distribution of a secretory protein in Aspergillus oryzae hyphae using the RntA-EGFP fusion protein. Biosci Biotechnol Biochem 67:455–459CrossRefGoogle Scholar
  16. Mizutani O, Nojima A, Yamamoto M, Furukawa K, Fujioka R, Yamagata Y, Abe K, Nakajima T (2004) Disordered cell integrity signaling caused by disruption of the kexB gene in Aspergillus oryzae. Eukaryot Cell 3:1036–1048CrossRefGoogle Scholar
  17. Robson G (1999) Hyphal cell biology. In: Oliver RP, Schweizer M (eds) Molecular fungal biology. Cambridge University Press, Cambridge, pp 164–184Google Scholar
  18. Pandey A, Roca MG, Read ND, Glass NL (2004) Role of a mitogen-activated protein kinase pathway during conidial germination and hyphal fusion in Neurospora crassa. Eukaryot Cell 3:348–358CrossRefGoogle Scholar
  19. Ryan FJ, Beadle GW, Tatum EL (1943) The tube method of measuring the growth rate of Neurospora. Am J Bot 30:784–799CrossRefGoogle Scholar
  20. Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kiryutin B, Koonin EV, Krylov DM, Mazumder R, Mekhedov SL, Nikolskaya AN, Rao BS, Smirnov S, Sverdlov AV, Vasudevan S, Wolf YI, Yin JJ, Natale DA (2003) The COG database: an updated version includes eukaryotes. BMC Bioinformatics 4:41CrossRefGoogle Scholar
  21. te Biesebeke R, Record E, van Beinzen N, Heerikhuisen M, Franken A, Punt PJ, van den Hondel CAMJJ (2005) Branching mutants of Aspergillus oryzae with improved amylase and protease production on solid substrates. Appl Microbiol Biotechnol 69:44–50CrossRefGoogle Scholar
  22. Teertstra WR, Lugones LG, Wösten HAB (2004) In situ hybridization in filamentous fungi using peptide nucleic acid probes. Fungal Genet Biol 41:1099–1103CrossRefGoogle Scholar
  23. Tey WK, North AJ, Reyes JL, Lu YF, Jedd G (2005) Polarized gene expression determines Woronin body formation at the leading edge of the fungal colony. Mol Biol Cell 16:2652–2659CrossRefGoogle Scholar
  24. Wösten HAB, Moukha SM, Sietsma JH, Wessels JGH (1991) Localization of growth and secretion of proteins in Aspergillus niger. J Gen Microbiol 137:2017–2023Google Scholar
  25. Yang Q, Borkovich KA (1999) Mutational activation of a Gαi causes uncontrolled proliferation of aerial hyphae and increased sensitivity to heat oxidative stress in Neurospora crassa. Genetics 151:107–117Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Kumiko Masai
    • 1
  • Jun-ichi Maruyama
    • 1
  • Kazutoshi Sakamoto
    • 2
  • Harushi Nakajima
    • 1
    • 3
  • Osamu Akita
    • 2
  • Katsuhiko Kitamoto
    • 1
  1. 1.Graduate School of Agricultural and Life Sciences, Department of BiotechnologyUniversity of TokyoBunkyo-kuJapan
  2. 2.National Research Institute of BrewingHigashi-HiroshimaJapan
  3. 3.Department of Agricultural ChemistryMeiji UniversityKawasakiJapan

Personalised recommendations