Applied Microbiology and Biotechnology

, Volume 71, Issue 4, pp 387–393 | Cite as

Biohybrid nanosystems with polymer nanofibers and nanotubes

  • A. Greiner
  • J. H. WendorffEmail author
  • A. L. Yarin
  • E. Zussman


Advanced techniques for the preparation of nanofibers, core shell fibers, hollow fibers, and rods and tubes from natural and synthetic polymers with diameters down to a few nanometers have recently been established. These techniques, among them electro- and co-electrospinning and specific template methods, allow the incorporation not only of semiconductor or catalytic nanoparticles or chromophores but also enzymes, proteins, microorganism, etc., directly during the preparation process into these nanostructures in a very gentle way. One particular advantage is that biological objects such as, for instance, proteins can be immobilized in a fluid environment within these polymer-based nano-objects in such a way that they keep their native conformation and the corresponding functions. The range of applications of such biohybrid nanosystems is extremely broad, for instance, in the areas of biosensorics, catalysis, drug delivery, or optoelectronics.


Green Fluorescent Protein Hollow Fiber Tobacco Mosaic Virus Biological Object Polylactide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We gratefully acknowledge the financial support by the Volkswagen Foundation (Program Komplexe Materialien:Verbundprojekte der Natur-, Ingenieur-, und Biowissenschaften).


  1. Bognitzki M, Hou HQ, Ishaque M, Frese T, Hellwig M, Schwarte C, Schaper A, Wendorff JH, Greiner A (2000) Polymer, metal, and hybrid nano- and mesotubes by coating degradable polymer template fibers (TUFT process). Adv Mater 12:637–640CrossRefGoogle Scholar
  2. Boudriot U, Goetz B, Dersch R, Greiner A, Wendorff JH (2005) Role of electrospun nanofibers in stem cell technologies and tissue engineering. Macromol Symp 225:9–16CrossRefGoogle Scholar
  3. Chen RJ, Zhang Y, Wang D, Da H (2001) Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J Am Chem Soc 123:3838–3839CrossRefGoogle Scholar
  4. Dersch R, Liu T, Schaper AK, Greiner A, Wendorff JH (2003) Electrospun nanofibers: internal structure and intrinsic orientation. J Polym Sci A Polym Chem 41:545–553CrossRefGoogle Scholar
  5. Dersch R, Greiner A, Wendorff JH (2004) Polymer nanofibers by electrospinning. Encyclopedia of nanoscience and nanotechnology. Marcel Dekker, pp 2931–2938Google Scholar
  6. Dersch R, Steinhart M, Boudrio U, Greiner A, Wendorf JH (2005) Nanoprocessing of polymers: applications in medicine, sensorics, catalysis, photonics. Polym Adv Technol 16:276–282CrossRefGoogle Scholar
  7. Dzenis Y (2004) Spinning continuous fibers for nanotechnology. Science 304:1917–1919CrossRefGoogle Scholar
  8. Elias HG (1992) Makromoleküle. Hüthig & Wepf, Basel, pp 501–560Google Scholar
  9. Fischer T, Hampp N (2004) Encapsulation of purple membrane patches into polymeric nanofibres by electrospinning. IEEE Trans NanoBioScience 2:118–120CrossRefGoogle Scholar
  10. Füchtjohann N (2006) Immobilisierung von Proteinen in elektrogesponnenen polymeren. Nanofasern Ph.d thesis, MarburgGoogle Scholar
  11. Graeser M (2004) Darstellung von bimetallischen Palladium/Rhodium Nanopartikel und deren Einsatz in der Katalyse. Diploma thesis, MarburgGoogle Scholar
  12. Hampp H, Oesterhelt D (2004) Bacteriorhodospin and its potential in technical applications. In: Mirkins C, Niemeyer C (eds) Nanobiotechnology: concepts, applications and perspectives. Wiley-VCH, Weinheim, pp 146–167Google Scholar
  13. Hohman MM, Shin M, Rutledge G, Brenner MP (2001a) Electrospinning and electrically forced jets. II. Applications. Phys Fluids 13:2221–2236CrossRefGoogle Scholar
  14. Hohman MM, Shin M, Rutledge G, Brenner MP (2001b) Electrospinning and electrically forced jets. I. Stability theory. Phys Fluids 13:2201–2220CrossRefGoogle Scholar
  15. Hou H, Jun Z, Reuning A, Schaper A, Wendorff JH, Greiner A (2002) Poly(p-xylylene) nanotubes by coating and removal of ultrathin polymer template fibers. Macromolecules 35:2429–2431CrossRefGoogle Scholar
  16. Huang ZM, Zhang YZ, Kotaki M, Ramakrishna S (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63:2223–2253CrossRefGoogle Scholar
  17. Jia H, Zhu G, Vugrinovich B, Kataphinan W, Reneker DH, Wang P (2002) Enzyme carrying polymeric nanofibers prepared via electrospinning for use as unique biocatalyst. Biotechnol Prog 18:1027–1032CrossRefGoogle Scholar
  18. Johnsson B, Lofas S, Linquist G (1991) Immobilization of proteins to a carboxymethyldextran modified gold surface for biospecific interaction analysis in surface plasmon resonance sensors. Anal Biochem 198:268–277CrossRefGoogle Scholar
  19. Jun Z, Aigner A, Czubayko F, Kissel T, Wendorff JH, Greiner A (2005) Poly(vinyl alcohol) nanofibers by electrospinning as a protein delivery system and the retardation of enzyme release by additional polymer coatings. Biomacromolecules 6:1484–1488CrossRefGoogle Scholar
  20. Kenawy ER, Bowlin GL, Mansfield K, Layman J, Simpson DG, Sanders EH, Wnek GE (2002) Release of tetracycline hydrochloride from electrospun poly(ethylene-co-vinylacetate), poly(lactic acid), and a blend. J Control Release 81:57–64CrossRefGoogle Scholar
  21. Koh CJ, Ataly A (2004) Tissue engineering, stem cells, and cloning. Opportunities for regenerative medicine. J Am Soc Nephrol 15:1113–1125CrossRefGoogle Scholar
  22. Li D, Xia Y (2004) Direct fabrication of composite and ceramic hollow nanofibers by electrospinning. Nano Lett 4:933–938CrossRefGoogle Scholar
  23. Li D, Herricks T, Xia Y (2003) Magnetic nanofibers of nickel ferrite prepared by electrospinning. Appl Phys Lett 83:4586–4588CrossRefGoogle Scholar
  24. Li D, Wang Y, Xia Y (2004) Electrospinning nanofibers as uniaxially aligned arrays and layer-by-layer stacked films. Adv Mater 16:361–366CrossRefGoogle Scholar
  25. Li WJ, Laurencin CT, Caterson EJ, Tuan RS, Ko FK (2002) Electrospun nanofibrous structure: a novel scaffold for tissue engineering. J Biomed Mater Res 60:613–621CrossRefGoogle Scholar
  26. Matthews JA, Boland ED, Wnek GE, Simpson DG, Bowlin GL (2003) Electrospinning of collagen type II: a feasibility study. J Bioact Compat Polym 18:125–134CrossRefGoogle Scholar
  27. Müller RH, Mäder K, Gohla S (2000) Solid lipid nanoparticles (SLN) for controlled drug delivery—a review of the state of the art. Eur J Pharm Biopharm 50:161–177CrossRefGoogle Scholar
  28. Ramakrishna S, Fujihara K, Teo WE, Lim TC, Ma Z (2005) An introduction to electrospinning and nanofibers. World Scientific, SingaporeGoogle Scholar
  29. Reneker DH, Yarin AL, Fong H, Koombhongse S (2000) Bending instability of electrically charged liquid jets of polymer solutions in electrospinning. J Appl Phys 87:4531–4547CrossRefGoogle Scholar
  30. Reznik SN, Yarin AL, Theron A, Zussman E (2004) Transient and steady shapes of droplets attached to a surface in a strong electric field. J Fluid Mech 516:349–377CrossRefGoogle Scholar
  31. Sano S, Kato K, Ikada Y (1993) Introduction of functional groups onto the surface of polyethylene for protein immobilization. Biomaterials 14:817–822CrossRefGoogle Scholar
  32. Schlecht S, Tan ST, Yosef M, Dersch R, Wendorff JH, Jia ZH, Schaper AK (2005) Towards linear arrays of quantum dots via polymer nanofibers and nanorods. Chem Mater 17:809–814CrossRefGoogle Scholar
  33. Scouten HW, Luong JHT, Brown RS (1995) Enzyme or protein immobilization techniques for applications in biosensor design. Trends Biotechnol 13:178–185CrossRefGoogle Scholar
  34. Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE (2001) Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release 70:1–20CrossRefGoogle Scholar
  35. Stasiak M (2004) Katalytische Aktivität von Scansdiumtriflat immobilisiert in elektrosgesponnenen Nanofasern. Diploma thesis, MarburgGoogle Scholar
  36. Steinhart M, Wendorff JH, Greiner A, Wehrspohn RB, Nielsch K, Schilling J, Choi J, Gösele U (2002) Polymer nanotubes by wetting of ordered porous templates. Science 296:1997CrossRefGoogle Scholar
  37. Steinhart M, Jia Z, Schaper A, Wehrspohn R, Gösele U, Wendorff JH (2003a) Palladium nanotubes with tailored wall morphologies. Adv Mater 15:706–709CrossRefGoogle Scholar
  38. Steinhart M, Senz S, Wehrspohn RB, Gösele U, Wendorff JH (2003b) Curvature-directed crystallization of poly(vinylidene difluoride) in nanotube walls. Macromolecules 36:3646–3651CrossRefGoogle Scholar
  39. Steinhart M, Wehrspohn RB, Gösele U, Wendorff JH (2004) Nanotubes by wetting, a modular assembly system. Angew Chem Int Ed Engl 43:1334–1344CrossRefGoogle Scholar
  40. Sun Z, Zussman E, Yarin A, Wendorff JH, Greiner A (2003) Compound core/shell polymer nanofibers by co-electrospinning. Adv Mater 15:1929–1932CrossRefGoogle Scholar
  41. Theron A, Zussman E, Yarin AL (2001) Electrostatic field-assisted alignment of electrospun nanofibers. Nanotechnology 12:384–390CrossRefGoogle Scholar
  42. Tsien RY (1998) The green fluorescent protein. Annu Rev Biochem 67:509–544CrossRefGoogle Scholar
  43. Yarin AL, Gottlieb O, Roisman IV (1997) Chaotic rotation of small particles shaped as triaxial ellipsoids in simple shear flow. J Fluid Mech 340:83–100CrossRefGoogle Scholar
  44. Yarin AL, Koombhongse S, Reneker DH (2001) Bending instability in electrospinning of nanofibers. J Appl Phys 89:3018–3026CrossRefGoogle Scholar
  45. Yoshimoto H, Shin YM, Terai H, Vacanti JP (2003) A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials 24:2077–2082CrossRefGoogle Scholar
  46. Zhang Y, Huang ZM, Xu X, Lim CT, Ramakrishna S (2004) Preparation of core-shell structured PCL-r-gelatin bi-component nanofibers by coaxial electrospinning. Chem Mater 16:3406–3409CrossRefGoogle Scholar
  47. Zussman E, Theron A, Yarin AL (2003) Formation of nanofiber crossbars in electro-spinning. Appl Phys Lett 82:973–975CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • A. Greiner
    • 1
    • 2
  • J. H. Wendorff
    • 1
    • 2
    Email author
  • A. L. Yarin
    • 3
  • E. Zussman
    • 3
  1. 1.Department of ChemistryPhilipps-UniversityMarburgGermany
  2. 2.Center of Material SciencePhilipps-UniversityMarburgGermany
  3. 3.Faculty of Mechanical EngineeringIsrael Institute of Technology, TechnionHaifaIsrael

Personalised recommendations