Skip to main content
Log in

Protein purification using magnetic adsorbent particles

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The application of functionalised magnetic adsorbent particles in combination with magnetic separation techniques has received considerable attention in recent years. The magnetically responsive nature of such adsorbent particles permits their selective manipulation and separation in the presence of other suspended solids. Thus, it becomes possible to magnetically separate selected target species directly out of crude biological process liquors (e.g. fermentation broths, cell disruptates, plasma, milk, whey and plant extracts) simply by binding them on magnetic adsorbents before application of a magnetic field. By using magnetic separation in this way, the several stages of sample pretreatment (especially centrifugation, filtration and membrane separation) that are normally necessary to condition an extract before its application on packed bed chromatography columns, may be eliminated. Magnetic separations are fast, gentle, scaleable, easily automated, can achieve separations that would be impossible or impractical to achieve by other techniques, and have demonstrated credibility in a wide range of disciplines, including minerals processing, wastewater treatment, molecular biology, cell sorting and clinical diagnostics. However, despite the highly attractive qualities of magnetic methods on a process scale, with the exception of wastewater treatment, few attempts to scale up magnetic operations in biotechnology have been reported thus far. The purpose of this review is to summarise the current state of development of protein separation using magnetic adsorbent particles and identify the obstacles that must be overcome if protein purification with magnetic adsorbent particles is to find its way into industrial practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. If superconducting coils are used, the field strength in HGMS can reach in excess of 5 T.

  2. Instead of switching the magnet ‘on’ and ‘off’, an alternative is to employ a permanent magnet system with a travelling filter matrix canister that can be mechanically reciprocated in and out of the magnetic field (see Fig. 2).

References

  • Arnold FH (1991) Metal-affinity separations: a new dimension in protein processing. Biotechnology 9:151–156

    Article  PubMed  CAS  Google Scholar 

  • Bucak S, Jones DA, Laibinis PE, Hatton TA (2003) Protein separations using colloidal magnetic nanoparticles. Biotechnol Prog 19:477–484

    Article  PubMed  CAS  Google Scholar 

  • Dunnill P, Lilly MD (1974) Purification of enzymes using magnetic bio-affinity materials. Biotechnol Bioeng 16:987–989

    Article  PubMed  CAS  Google Scholar 

  • Ebner N (2006) Einsatz von Magnettechnologie bei der Bioproduktaufarbeitung, PhD thesis, Universität Karlsruhe

  • Franzreb M, Watson JHP (2001) Elimination of heavy metals from waste waters by magnetic technologies. In: SenGupta AK (ed) Environmental separation of heavy metals: engineered processes. CRC Press, London, UK, pp 97–140

    Google Scholar 

  • Franzreb M, Ebner N, Siemann-Herzberg M (2003) Magnettechnologie in der Bioproduktaufreinigung. Transkript (ISSN 1435-5272), 9, SH Nachh. Biokatal., 112–115

  • Franzreb M, Ebner N, Siemann-Herzberg M, Hobley TJ, Thomas ORT (2006) Product recovery by high-gradient magnetic fishing (HGMF). In: Shukla A, Gadam S, Etzel M (eds) Process-scale bioseparations for the biopharmaceutical industry. Marcel Dekker, New York (accepted)

  • Gerber R, Birss RR (1983) High gradient magnetic separation. Research Studies, Chichester, UK

    Google Scholar 

  • Halling PJ, Dunnill P (1980) Magnetic supports for immobilised enzymes and bioaffinity adsorbents. Enzyme Microb Technol 2:2–10

    Article  CAS  Google Scholar 

  • Heebøll-Nielsen A (2002) Functionalisation of non-porous superparamagnetic protein adsorbents and their application in high gradient magnetic fishing. PhD thesis, Technical University of Denmark. ISBN 87-88584-82-8

  • Heebøll-Nielsen A, Choe W-S, Middelberg APJ, Thomas ORT (2003) Efficient inclusion body processing using chemical extraction and high-gradient magnetic fishing. Biotechnol Prog 19:887–898

    Article  PubMed  CAS  Google Scholar 

  • Heebøll-Nielsen A, Dalkiaer M, Hubbuch JJ, Thomas ORT (2004a) Superparamagnetic adsorbents for high-gradient magnetic fishing of lectins out of legume extracts. Biotechnol Bioeng 87:311–323

    Article  PubMed  CAS  Google Scholar 

  • Heebøll-Nielsen A, Justesen SFL, Hobley TJ and Thomas ORT (2004b) Superparamagnetic cation–exchange adsorbents for bioproduct recovery from crude process liquors by high-gradient magnetic fishing. Sep Sci Technol 39:2891–2914

    Article  Google Scholar 

  • Heebøll-Nielsen A, Justesen SFL, Thomas ORT (2004c) Fractionation of whey proteins with high-capacity superparamagnetic ion-exchangers. J Biotechnol 113:247–262

    Article  PubMed  CAS  Google Scholar 

  • Hirschbein BL, Brown DW, Whitesides GM (1982) Magnetic separation in chemistry and biochemistry. Chemtech 12:172–179

    CAS  Google Scholar 

  • Hoffmann C (2003) Einsatz magnetischer Separationsverfahren zur biotechnologischen Produktaufarbeitung, PhD thesis, Universität Karlsruhe

  • Hoffmann C, Franzreb M, Höll WH (2002) A novel high-gradient magnetic separator (HGMS) design for biotech applications. IEEE Trans Appl Supercond 12:963–966

    Article  Google Scholar 

  • Holschuh K, Schwämmle A (2005) Preparative purification of antibodies with protein A—an alternative to conventional chromatography. J Magn Magn Mater 293:345–348

    Article  CAS  Google Scholar 

  • Hubbuch JJ (2001) Development of adsorptive separation systems for recovery of proteins from crude bioprocess liquors, PhD thesis, Technical University of Denmark. ISBN 87-88584-57-7

  • Hubbuch JJ, Thomas ORT (2002) High-gradient magnetic affinity separation of trypsin from porcine pancreatin. Biotechnol Bioeng 79:301–313

    Article  PubMed  CAS  Google Scholar 

  • Hubbuch JJ, Matthiesen DB, Hobley TJ, Thomas ORT (2001) High gradient magnetic separation versus expanded bed adsorption: a first principle comparison. Bioseparation 10:99–112

    Article  PubMed  CAS  Google Scholar 

  • Kimura S, Levenspiel O (1989) Magnetic filter for solids: theory and experiment. Ind Eng Chem Res 28:803–808

    Article  CAS  Google Scholar 

  • Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 44:1361–1403

    Article  Google Scholar 

  • Liao M-H, Chen DH (2002a) Fast and efficient adsorption/desorption of protein by a novel magnetic nano-adsorbent. Biotechnol Lett 24:1913–1917

    Article  CAS  Google Scholar 

  • Liao M-H, Chen DH (2002b) Preparation and characterization of a novel magnetic nano-adsorbent. J Mater Chem 12:3654–3659

    Article  CAS  Google Scholar 

  • Liu X, Guan Y, Liu H, Ma Z, Yang Y, Wu X (2005) Preparation and characterization of magnetic polymer nanospheres with high protein binding capacity. J Magn Magn Mater 293:111–118

    Article  CAS  Google Scholar 

  • Ma Z-Y, Guan Y-P, Liu1 H-Z (2005) Synthesis of monodisperse nonporous crosslinked poly(glycidyl methacrylate) particles with metal affinity ligands for protein adsorption. Polym Int 54:1502–1507

    Article  CAS  Google Scholar 

  • Meyer A (2004) Einsatz magnettechnologischer Trennverfahren zur Aufbereitung von Molkereiprodukten, PhD thesis, Universität Karlsruhe

  • Meyer A, Hansen DB, Gomes CSG, Hobley TJ, Thomas ORT, Franzreb M (2005) Demonstration of a strategy for product purification by high-gradient magnetic fishing: recovery of superoxide dismutase from unconditioned whey. Biotechnol Prog 21:244–254

    Article  PubMed  CAS  Google Scholar 

  • Moeser GD, Roach KA, Green WH, Hatton TA (2004) High-gradient magnetic separation of coated magnetic nanoparticles. AIChE J 50:2835–2848

    Article  CAS  Google Scholar 

  • Morgan PE (1996) Non-porous pseudoaffinity supports for the recovery of antibodies, PhD thesis, University College London

  • Mosbach K, Andersson L (1977) Magnetic ferrofluids for preparation of magnetic polymers and their application in affinity chromatography. Nature 270:259–261

    Article  CAS  Google Scholar 

  • O’Brien SM (1995) The separation of recombinant proteins by metal-chelating magnetic affinity supports, PhD thesis, University College London

  • O’Brien SM, Thomas ORT, Dunnill P (1996) Non-porous magnetic chelator supports for protein recovery by immobilised metal affinity adsorption. J Biotechnol 50:13–25

    Article  CAS  Google Scholar 

  • O’Brien SM, Sloane RP, Thomas ORT, Dunnill P (1997) Characterisation of non-porous magnetic chelator supports and their use to recover polyhistidine-tailed T4 lysozyme from a crude E. coli extract. J Biotechnol 54:53–67

    Article  PubMed  CAS  Google Scholar 

  • Peng ZG, Hidajat K, Uddin MS (2004) Adsorption and desorption of lysozyme on nano-sized magnetic particles and its conformational changes. Colloids Surf B 35:169–174

    Article  CAS  Google Scholar 

  • Pieters BR, Williams RA, Webb C (1991) Magnetic carrier technology. In: Williams RA (ed) Colloid and surface engineering: applications in the process industries. Butterworth-Heinemann, Oxford, UK, pp 248–286

    Google Scholar 

  • Robinson PJ, Dunnill P, Lilly MD (1973) The properties of supports in relation to immobilised enzyme reactors. Biotechnol Bioeng 14:603–606

    Article  Google Scholar 

  • Šafařík I, Šafaříková M (2004) Magnetic techniques for the isolation and purification of proteins and peptides. BioMagnetic Research and Technology 2:7

    Article  PubMed  Google Scholar 

  • Svoboda J (1987) Magnetic methods for the treatment of minerals. Elsevier, Amsterdam, The Netherlands

    Google Scholar 

  • Tong X-D, Xue B, Sun Y (2001) A novel magnetic affinity support for protein adsorption and purification. Biotechnol Prog 17:134–139

    Article  PubMed  CAS  Google Scholar 

  • Whitesides GM, Kazlauskas RJ, Josephson L (1983) Magnetic separations in biotechnology. Trends Biotechnol 1:144–148

    Article  Google Scholar 

  • Yang C, Liu H, Guan Y, Xing J, Liu J, Shan G (2005) Preparation of magnetic poly(methylmethacrylate-divinylbenzene-glycidylmethacrylate) microspheres by spraying suspension polymerization and their use for protein adsorption. J Magn Magn Mater 293:187–192

    Article  CAS  Google Scholar 

  • Zulqarnain K (1999) Scale-up of affinity separation based on magnetic support particles. PhD thesis, University College London

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Franzreb.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Franzreb, M., Siemann-Herzberg, M., Hobley, T.J. et al. Protein purification using magnetic adsorbent particles. Appl Microbiol Biotechnol 70, 505–516 (2006). https://doi.org/10.1007/s00253-006-0344-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-006-0344-3

Keywords

Navigation