Advertisement

Applied Microbiology and Biotechnology

, Volume 70, Issue 3, pp 273–280 | Cite as

Whole-cell living biosensors—are they ready for environmental application?

  • Hauke HarmsEmail author
  • Mona C. Wells
  • Jan Roelof van der Meer
Mini-Review

Abstract

Since the development of the first whole-cell living biosensor or bioreporter about 15 years ago, construction and testing of new genetically modified microorganisms for environmental sensing and reporting has proceeded at an ever increasing rate. One and a half decades appear as a reasonable time span for a new technology to reach the maturity needed for application and commercial success. It seems, however, that the research into cellular biosensors is still mostly in a proof-of-principle or demonstration phase and not close to extensive or commercial use outside of academia. In this review, we consider the motivations for bioreporter developments and discuss the suitability of extant bioreporters for the proposed applications to stimulate complementary research and to help researchers to develop realistic objectives. This includes the identification of some popular misconceptions about the qualities and shortcomings of bioreporters.

Keywords

Arsenic Polycyclic Aromatic Hydrocarbon Arsenite Signalling Chain Chemical Flux 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Andersen JB, Heydorn A, Hentzer M, Eberl L, Geisenberger O, Christensen BB, Molin S, Givskov M (2001) gfp-Based N-acyl homoserine-lactone sensor systems for detection of bacterial communication. Appl Environ Microbiol 67:575–585CrossRefPubMedGoogle Scholar
  2. Bahl MI, Hestbjerg Hansen L, Rask Licht T, Sorensen SJ (2004) In vivo detection and quantification of tetracycline by use of a whole-cell biosensor in the rat intestine. Antimicrob Agents Chemother 48:1112–1117CrossRefPubMedGoogle Scholar
  3. Belkin S (2003) Microbial whole-cell sensing systems of environmental pollutants. Curr Opin Microbiol 6:206–212PubMedGoogle Scholar
  4. Bolton EK, Sayler GS, Nivens DE, Rochelle JM, Ripp S, Simpson ML (2002) Integrated CMOS photodetectors and signal processing for very low-level chemical sensing with the bioluminescent bioreporter integrated circuit. Sens Actuators B 85:179–185CrossRefGoogle Scholar
  5. Daunert S, Barrett G, Feliciano JS, Shetty RS, Shresta S, Smith-Spencer W (2000) Genetically engineered whole-cell sensing systems: coupling biological recognition with reporter genes. Chem Rev 100:2705–2738CrossRefPubMedGoogle Scholar
  6. Desbrow C, Routledge EJ, Brighty GC, Sumpter JP, Waldock M (1998) Identification of estrogenic chemicals in STW effluent. 1. Chemical fractionation and in vitro biological screening. Environ Sci Technol 32:1549–1558CrossRefGoogle Scholar
  7. Deuschle K, Okumoto S, Fehr M, Looger LL, Kozhukh L, Frommer WB (2005) Construction and optimization of a family of genetically encoded metabolite sensors by semirational protein engineering. Protein Sci 14:2304–2314CrossRefPubMedGoogle Scholar
  8. Dorn JG, Mahal MK, Brusseau ML, Maier RM (2004) Employing a novel fiber optic detection system to monitor the dynamics of in situ lux bioreporter activity in porous media system performance update. Anal Chim Acta 525:63–74CrossRefGoogle Scholar
  9. D’Souza SF (2001) Microbial biosensors. Biosens Bioelectron 16:337–353PubMedGoogle Scholar
  10. Ehlers LJ, Luthy RG (2003) Contaminant bioavailability in soil and sediment. Environ Sci Technol 37:295A–302APubMedCrossRefGoogle Scholar
  11. Giger W, Berg M, Pham HV, Duong HA, Tran HC, Tao TH, Schertenleib R (2003) Environmental analytical research in Northern Vietnam—a Swiss–Vietnamese cooperation focusing on arsenic and organic contaminants in aquatic environments and drinking water. Chimia 57:529–537Google Scholar
  12. Guerin WF, Boyd SA (1992) Differential bioavailability of soil-sorbed naphthalene to two bacterial species. Appl Environ Microbiol 58:1142–1152PubMedGoogle Scholar
  13. Hansen LH, Sørensen SJ (2001) The use of whole-cell biosensors to detect and quantify compounds or conditions affecting biological systems. Microb Ecol 42:483–494CrossRefPubMedGoogle Scholar
  14. Harms H, Wick LY (2004) Mobilization of organic compounds and iron by microorganisms. In: van Leeuwen HP, Koester W (eds) Physicochemical kinetics and transport at chemical–biological interphases. Wiley, Chichester, pp 401–444Google Scholar
  15. Harms H, Rime J, Leupin O, Hug SJ, van der Meer JR (2005) Influence of groundwater composition on arsenic detection by bacterial biosensors. Mikrochim Acta 151:217–222Google Scholar
  16. Heitzer A, Webb OF, Thonnard JE, Sayler GS (1992) Specific and quantitative assessment of naphthalene and salicylate bioavailability by using a bioluminescent catabolic reporter bacterium. Appl Environ Microbiol 58:1839–1846PubMedGoogle Scholar
  17. Heitzer A, Malachowsky K, Thonnard JE, Bienkowski PR, White DC, Sayler GS (1994) Optical biosensor for environmental on-line monitoring of naphthalene and salicylate bioavailability with an immobilized bioluminescent catabolic reporter bacterium. Appl Environ Microbiol 60:1487–1494PubMedGoogle Scholar
  18. Hermens J, Busser F, Leeuwangh P, Musch A (1985) Quantitative structure activity relationship and mixture toxicity of organic chemicals in Photobacterium phosphoreum—the Microtox test. Ecotoxicol Environ Saf 9:17–25CrossRefPubMedGoogle Scholar
  19. Jaspers MCM, Meier C, Zehnder AJB, Harms H, van der Meer JR (2001) Measuring mass transfer processes of octane with the help of an alkS–alkB∷gfp-tagged Escherichia coli. Environ Microbiol 3:512–524CrossRefGoogle Scholar
  20. Keane A, Phoenix P, Goshal S, Lau PC (2002) Exposing culprit organic pollutants: a review. J Microbiol Methods 49:103–119CrossRefPubMedGoogle Scholar
  21. King JMH, DiGrazia PM, Applegate B, Burlage R, Sanseverino J, Dunbar P, Larimer F, Sayler GS al (1990) Rapid, sensitive bioluminescent reporter technology for naphthalene exposure and biodegradation. Science 249:778–781PubMedADSGoogle Scholar
  22. Leupin OX, Hug SJ, Badruzzaman ABM (2005) Arsenic removal from Bangladesh tube well water with filter columns containing zerovalent iron filings and sand. Environ Sci Technol 39:8032–8037PubMedGoogle Scholar
  23. Leveau JHJ, Lindow SE (2001) Appetite of an epiphyte: quantitative monitoring of bacterial sugar consumption in the phyllosphere. Proc Natl Acad Sci U S A 98:3446–3453CrossRefPubMedADSGoogle Scholar
  24. Leveau JHJ, Lindow SE (2002) Bioreporters in microbial ecology. Curr Opin Microbiol 5:259–265CrossRefPubMedGoogle Scholar
  25. Looger LL, Dwyer MA, Smith JJ, Hellinga HW (2003) Computational design of receptor and sensor proteins with novel functions. Nature 423:185–189CrossRefPubMedADSGoogle Scholar
  26. Lyngberg OK, Stemke DJ, Schottel JL, Flickinger MC (1999) A single-use luciferase-based mercury biosensor using Escherichia coli HB101 immobilized in a latex copolymer film. J Ind Microbiol Biotechnol 47:604–609Google Scholar
  27. Mische L, Belkin S, Rozen R, Balandreau J (2003) Rice seedling whole exudates and extracted alkylresorcinols induce stress-response in Escherichia coli biosensors. Environ Microbiol 5:403–411CrossRefPubMedGoogle Scholar
  28. Møller S, Sternberg C, Andersen JB, Christensen BB, Ramos JL, Givskov M, Molin S (1998) In situ gene expression in mixed-culture biofilms: evidence of metabolic interactions between community members. Appl Environ Microbiol 64:721–732PubMedGoogle Scholar
  29. Norman A, Hansen LH, Sørensen SJ (2005) Construction of a ColD cda promoter-based SOS-green fluorescent protein whole-cell biosensor with higher sensitivity toward genotoxic compounds than constructs based on recA, umuDC, or sul4 promoters. Appl Environ Microbiol 71:2338–2346CrossRefPubMedGoogle Scholar
  30. Ortega-Calvo JJ, Marchenko AI, Vorobyov AV, Borovick RV (2003) Chemotaxis in polycyclic aromatic hydrocarbon-degrading bacteria isolated from coal-tar- and oil-polluted rhizospheres. FEMS Microbiol Ecol 44:373–381CrossRefGoogle Scholar
  31. Porta D, Bullerjahn GS, Durham KA, Wilhelm SW, Twiss MR, McKay RML (2003) Physiological characterization of a Synechococcus sp. (Cyanophyceae) strain PCC 7942 iron-dependent bioreporter for freshwater environments. J Phycol 39:64–73CrossRefGoogle Scholar
  32. Rajan Premkumar JR, Rosen R, Belkin S, Lev O (2002) Sol–gel luminescence biosensors: encapsulation in recombinant E. coli reporters in thick silicate films. Anal Chim Acta 461:11–23CrossRefGoogle Scholar
  33. Rosen BP (2002) Biochemistry of arsenic detoxification. FEBS Lett 529:86–92CrossRefPubMedGoogle Scholar
  34. Sanders OI, Rensing C, Kuroda M, Mitra B, Rosen BP (1997) Antimonite is accumulated by the glycerol facilitator GlpF in Escherichia coli. J Bacteriol 179:3365–3367PubMedGoogle Scholar
  35. Sayler GS, Ripp S (2000) Field applications of genetically engineered microorganisms for bioremediation processes. Curr Opin Biotechnol 11:286–289CrossRefPubMedGoogle Scholar
  36. Semple KT, Doick KJ, Jones KC, Burauel P, Craven A, Harms H (2004) Defining bioavailability and bioaccessibility of contaminated soil and sediment is complicated. Environ Sci Technol 38:228A–231APubMedGoogle Scholar
  37. Sticher P, Jaspers MCM, Stemmler K, Harms H, Zehnder AJB, van der Meer JR (1997) Development and characterization of a whole-cell bioluminescent sensor for bioavailable middle-chain alkanes in contaminated groundwater samples. Appl Environ Microbiol 36:4053–4060Google Scholar
  38. Stocker J, Balluch D, Gsell, Harms H, Feliciano JS, Malik KA, Daunert S, van der Meer JR (2003) Development of a set of simple bacterial biosensors for quantitative and rapid field measurements of arsenite and arsenate in potable water. Environ Sci Technol 37:4743–4750CrossRefPubMedGoogle Scholar
  39. Timmis KN, Pieper DH (1999) Bacteria designed for bioremediation. Trends Biotechnol 17:201–204CrossRefGoogle Scholar
  40. Toba FA, Hay AG (2005) A simple solid phase assay for the detection of 2,4-D in soil. J Microbiol Methods 62:135–143CrossRefPubMedGoogle Scholar
  41. Trang PTK, Berg M, Viet PH, Mui NV, van der Meer JR (2005) Bacterial bioassay for rapid and accurate analysis of arsenic in highly variable groundwater samples. Environ Sci Technol 39:3625–3630CrossRefGoogle Scholar
  42. Van der Meer JR, Tropel D, Jaspers M (2004) Illuminating the detection chain of bacterial bioreporters. Environ Microbiol 6:1005–1020CrossRefPubMedGoogle Scholar
  43. Van Dyk TK, DeRose EJ, Gonye GE (2001) LuxArray, a high-density, genomewide transcription analysis of Escherichia coli using bioluminescent reporter strains. J Bacteriol 183:5496–5505CrossRefPubMedGoogle Scholar
  44. Vardar G, Babieri P, Wood TK (2005) Chemotaxis of Pseudomonas stutzeri OX1 and Burkholderia cepacia G4 toward chlorinated ethenes. Appl Microbiol Biotechnol 66:696–701CrossRefPubMedGoogle Scholar
  45. Virta M, Lampinen J, Karp M (1995) A luminescence-based mercury biosensor. Anal Chem 67:667–669CrossRefGoogle Scholar
  46. Wells M, Gosch M, Rigler R, Harms H, Lasser T, van der Meer JR (2005) Ultrasensitive reporter protein detection in genetically engineered bacteria. Anal Chem 77:2683–2689CrossRefPubMedGoogle Scholar
  47. Werlen C, Jaspers MCM, van der Meer JR (2004) Gas-phase end point measurements of bioavailable naphthalene using a Pseudomonas putida biosensor. Appl Environ Microbiol 70:43–51CrossRefPubMedGoogle Scholar
  48. Wick LY, Colangelo T, Harms H (2001) Kinetics of mass transfer limited bacterial growth on solid PAHs. Environ Sci Technol 35:354–361CrossRefPubMedGoogle Scholar
  49. Willsky GR, Malamy MH (1980) Effect of arsenate on inorganic phosphate transport in Escherichia coli. J Bacteriol 144:356–365PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Hauke Harms
    • 1
    Email author
  • Mona C. Wells
    • 2
  • Jan Roelof van der Meer
    • 3
  1. 1.Department of Environmental MicrobiologyUFZ Centre for Environmental Research Leipzig-Halle GmbHLeipzigGermany
  2. 2.Department of ChemistryTennessee Technological UniversityCookevilleUSA
  3. 3.Department of Fundamental MicrobiologyUniversity of LausanneLausanneSwitzerland

Personalised recommendations