Advertisement

Applied Microbiology and Biotechnology

, Volume 68, Issue 2, pp 151–162 | Cite as

Amphotericin B

  • A. Lemke
  • A. F. Kiderlen
  • O. KayserEmail author
Mini-Review

Abstract

Invasive fungal infections are a major cause of morbidity and mortality in immunodeficient individuals (such as AIDS patients) and in transplant recipients or tumor patients undergoing immunosuppressive chemotherapy. Amphotericin B is one of the oldest, yet most efficient antimycotic agents. However, its usefulness is limited due to dose-dependent side-effects, notably nephrotoxicity. In order to improve its safety margin, new pharmaceutical formulations of amphotericin B have been designed especially to reduce its detrimental effects on the kidneys. Since the 1980s, a wide variety of new amphotericin B formulations have been brought forward for clinical testing, many of which were approved and reached market value in the 1990s. This review describes and discusses the molecular genetics, pharmacological, toxicological, and clinical aspects of amphotericin B itself and many of its innovative formulations.

Keywords

Ergosterol DPPC Visceral Leishmaniasis Solid Lipid Nanoparticles Fungizone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Adedoyin A, Bernardo JF, Swenson CE, Bolsack LE, Horwith G, Wit S de, Kelly E, Klasterksy J, Sculier JP, Valeriola D de, Anaissie E, Lopez-Berestein G, Llanos-Cuentas A, Boyle A, Branch RA (1997) Pharmacokinetic profile of ABELCET (amphotericin B lipid complex injection): combined experience from phase I and phase II studies. Antimicrob Agents Chemother 41:2201–2208Google Scholar
  2. Adler-Moore J, Proffitt RT (2003) Effect of tissue penetration on AmBisome efficacy. Curr Opin Investig Drugs 4:179–185Google Scholar
  3. Anaissie EJ, Hachem R, Legrand C, Legenne P, Nelson P, Bodey GP (1992) Lack of activity of amphotericin B in systemic murine fusarial infection. J Infect Dis 165:1155–1157Google Scholar
  4. Aparicio JF, Caffrey P, Gil JA, Zotchev SB (2003) Polyene antibiotic biosynthesis gene clusters. Appl Microbiol Biotechnol 61:179–188Google Scholar
  5. Ayestaran A, Lopez RM, Montoro JB, Estibalez A, Pou L, Julia A, Lopez A, Pascual B (1996) Pharmacokinetics of conventional formulation versus fat emulsion formulation of amphotericin B in a group of patients with neutropenia. Antimicrob Agents Chemother 40:609–612Google Scholar
  6. Baginski M, Resat H, McCammon JA (1997) Molecular properties of amphotericin B membrane channel: a molecular dynamics simulation. Mol Pharmacol 52:560–570Google Scholar
  7. Barrett JP, Vardulaki KA, Conlon C, Cooke J, Daza-Ramirez P, Evans EG, Hawkey PM, Herbrecht R, Marks DI, Moraleda JM, Park GR, Senn SJ, Viscoli C, Amphotericin B Systematic Review Study Group (2003) A systematic review of the antifungal effectiveness and tolerability of amphotericin B formulations. Clin Ther 25:1295–1320Google Scholar
  8. Bates DW, Su L, Yu DT (2001) Mortality and costs of acute renal failure associated with amphotericin B therapy. Clin Infect Dis 32:686–693Google Scholar
  9. Bazile DV, Ropert C, Huve P, Verrecchia T, Marland M, Frydman A, Veillard M, Spenlehauer G (1992) Body distribution of fully biodegradable [14C]-poly(lactic acid) nanoparticles coated with albumin after parenteral administration to rats. Biomaterials 13:1093–1102Google Scholar
  10. Bekersky II, Fielding RM (1999) Lipid-based amphotericin B formulations: from animals to man. 2(6):230–236Google Scholar
  11. Bekersky I, Fielding RM, Buell D, Lawrence II (2001) Pharmacokinetics, excretion, and mass balance of 14C after administration of 14C-cholesterol-labeled AmBisome to healthy volunteers. J Clin Pharmacol 41:963–971Google Scholar
  12. Bennett J (1995) Antimicrobial agents: antifungal agents. In: Hardman J, Limbird L (eds) Goodman & Gilman’s pharmacological basis of therapeutics. McGraw–Hill, New York, pp 1175–1790Google Scholar
  13. Bishara J, Weinberger M, Lin AY, Pitlik S (2001) Amphotericin B—not so terrible. Ann Pharmacother 35:308–310Google Scholar
  14. Boswell GW, Bekersky I, Buell D, Hiles R, Walsh TJ (1998a) Toxicological profile and pharmacokinetics of a unilamellar liposomal vesicle formulation of amphotericin B in rats. Antimicrob Agents Chemother 42:263–268Google Scholar
  15. Boswell GW, Buell D, Bekersky (1998b) AmBisome (liposomal amphotericin B): a comparative review. J Clin Pharmacol 38:583–592Google Scholar
  16. Bowden R, Chandrasekar P, White MH, Li X, Pietrelli L, Gurwith M, Burik JA van, Laverdiere M, Safrin S, Wingard JR (2002) A double-blind, randomized, controlled trial of amphotericin B colloidal dispersion versus amphotericin B for treatment of invasive aspergillosis in immunocompromised patiets. Clin Infect Dis 35:359–366Google Scholar
  17. Brajtburg J, Powderly WG, Kobayashi GS, Medoff G (1990) Amphotericin B: current understanding of mechanisms of action. Antimicrob Agents Chemother 34:183–188Google Scholar
  18. Caffrey P, Lynch S, Flood E, Finnan S, Oliynyk M (2001) Amphotericin B biosynthesis in Streptomyces nodosus: deductions from analysis of polyketide synthase and late genes. Chem Biol 8:713–723CrossRefPubMedGoogle Scholar
  19. Canton E, Peman J, Gobernado M, Viudes A, Espinel-Ingroff A (2004) Patterns of amphotericin B killing kinetics against seven Candida species. Antimicrob Agents Chemother 48:2477–2482Google Scholar
  20. Carmody M, Byrne B, Murphy B, Breen C, Lynch S, Flood E, Finnan S, Caffrey P (2004) Analysis and manipulation of amphotericin biosynthetic genes by means of modified phage KC515 transduction techniques. Gene 343:107–115Google Scholar
  21. Carrillo-Munoz AJ, Quindos G, Tur C, Ruesga M, Alonso R, Valle O de, Rodriguez V, Arevalo MP, Salgado J, Martin-Mazuelos E, Bornay-Llinares FJ, Palacio A del, Cuetara M, Gasser I, Hernandez-Molina JM, Peman J (2000) Comparative in vitro antifungal activity of amphotericin B lipid complex, amphotericin B and fluconazole. Chemotherapy 46:235–244Google Scholar
  22. Chopra R, Blair S, Strang J, Cervi P, Patterson K, Goldstone A (1991) Liposomal amphotericin B (Ambisome) in the treatment of fungal infections in neutropenic patients. J Antimicrob Agents 28:93–108Google Scholar
  23. Clemons KV, Stevens DA (2004) Comparative efficacies of four amphotericin B formulations—Fungizone, amphotec (Amphocil), AmBisome, and Abelcet—against systemic murine aspergillosis. Antimicrob Agents Chemother 48:1047–1050Google Scholar
  24. Davidson RN, Martino L di, Gradoni L, Giacchino R, Gaeta GB, Pempinello R, Scotti S, Cascio A, Castagnola E, Maiso A, Gramiccia M, Caprio D di, Wilkinson RJ, Bryceson AD (1996) Short-course treatment of visceral leishmaniasis with liposomal amphotericin B (AmBisome). Clin Infect Dis 22:938–943Google Scholar
  25. Desjeux P, Alvar J (2003) Leishmania/HIV co-infections: epidemiology in Europe. Ann Trop Med Parasitol 97[Suppl 1]:3–15Google Scholar
  26. Dignani MC, Anaissie E (2004) Human fusariosis. Clin Microbiol Infect 10[Suppl 1]:67–75Google Scholar
  27. Dutcher JD, Gold W, Pagano JF, Vandepatte J (1959) Amphotericin B, its production and its salts. US patent 2,908,611Google Scholar
  28. Ellis D (2002) Amphotericin B: spectrum and resistance. J Antimicrob Chemother 49[Suppl 1]:7–10Google Scholar
  29. Eriksson U, Seifert B, Schaffner A (2001) Comparison of effects of amphotericin B deoxycholate infused over 4 or 24 h: randomised controlled trial. Br Med J 322:579–582Google Scholar
  30. Erjavec Z, Woolthuis GM, Vries-Hospers HG de, Sluiter WJ, Daenen SM, Pauw B de, Halie MR (1997) Tolerance and efficacy of amphotericin B inhalations for prevention of invasive pulmonary aspergillosis in haematological patients. Eur J Clin Microbiol Infect Dis 16:364–368Google Scholar
  31. Gallagher JC, Dodds Ashley ES, Drew RH, Perfect JR (2003) Antifungal pharmacotherapy for invasive mould infections Expert Opin Pharmacother 4:147–164Google Scholar
  32. Garcia A, Adler-Moore JP, Proffitt RT (2000) Single-dose AmBisome (liposomal amphotericin B) as prophylaxis for murine systemic candidiasis and histoplasmosis. Antimicrob Agents Chemother 44:2327–2332Google Scholar
  33. Gates C, Pinney R (1993) Amphotericin B and its delivery by liposomal and lipid formulations. J Clin Pharmacy Ther 18:147–153Google Scholar
  34. Gergel D, Ondrias K (1993) Incorporation of amphotericin B (Fungizone) in rat brain total lipid liposomes markedly decreases its i.v. toxicity in mice. Pharmazie 48:202–205Google Scholar
  35. Gref R, Luck M, Quellec P, Marchand M, Dellacherie E, Harnisch S, Blunk T, Muller RH (2000) ‘Stealth’ corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. Colloids Surf B Biointerfaces 18:301–313Google Scholar
  36. Hamilton-Miller JM (1974) Fungal sterols and the mode of action of the polyene antibiotics. Adv Appl Microbiol 17:109–134Google Scholar
  37. Heit MC, Riviere JE (1995) Inaifungal and antiviral drugs. In: Adams HR (ed) Veterinary pharmycology and therapeutics, vol 7. Iowa State University, Ames, pp 855–884Google Scholar
  38. Herbrecht R, Natarajan-Ame S, Nivoix Y, Letscher-Bru V (2003) The lipid formulations of amphotericin B. Expert Opin Pharmacother 4:1277–1287Google Scholar
  39. Hertenstein B, Kern WV, Schmeiser T, Stefanic M, Bunjes D, Wiesneth M, Novotny J, Heimpel H, Arnold R (1994) Low incidence of invasive fungal infections after bone marrow transplantation in patients receiving amphotericin B inhalations during neutropenia. Ann Hematol 68:21–26Google Scholar
  40. Hoffman HL, Pfaller MA (2001) In vitro antifungal susceptibility testing. Pharmacotherapy 21:111S–123SGoogle Scholar
  41. Idemyor V (2003) Emerging opportunistic fungal infections: where are we heading? J Natl Med Assoc 95:1211–1215Google Scholar
  42. Just-Nubling G (1994) Therapy of candidiasis and cryptococcosis in AIDS. Mycoses 37[Suppl 2]:56–63Google Scholar
  43. Karyotakis NC, Anaissie EJ (1994) Efficacy of escalating doses of liposomal amphotericin B (AmBisome) against hematogenous Candida lusitaniae and Candida krusei infection in neutropenic mice. Antimicrob Agents Chemother 38:2660–2662Google Scholar
  44. Kayser O (2003) Nanosuspensionen als neue Arzneiform zur Therapie protozoischer Infektionen. Frieling, BerlinGoogle Scholar
  45. Kayser O, Kiderlen AF, Gelderblom H (2001) Aufnahme von Wirkstoff-Nanopartikeln in Leishmania donovani-infizierten Makrophagen. Dtsch Apotheker Z 141:1836–1838Google Scholar
  46. Kayser O, Olbrich C, Yardley V, Kiderlen AQF, Croft SL (2003) Formulation of amphotericin B as nanosuspension for oral administration. Int J Pharm 254:73–75Google Scholar
  47. Kelly SL, Lamb DC, Kelly DE, Loeffler J, Hebart H, Schumacher U, Einsele H (1997) Resistance to fluconazole and cross-resistance to amphotericin B in Candida albicans from AIDS patients caused by defective sterol delta5,6-desaturation. FEBS Lett 400:80–82Google Scholar
  48. Kretschmar M, Amselem S, Zawoznik E, Mosbach K, Dietz A, Hof H, Nichterlein T (2001) Efficient treatment of murine systemic infection with Candida albicans using amphotericin B incorporated in nanosize range particles (emulsomes). Mycoses 44:281–286Google Scholar
  49. Kroker R (1999) Pharmaka zur Behandlung von Pilzinfektionen. In: Löscher W, Ungemach F, Kroker R (eds) Pharmakotherapie bei Haus und Nutztieren. Parey, Berlin, pp 290–294Google Scholar
  50. Lambros M, Bourne D, Abbas S, Johnson D (1997) Disposition of aerolized liposomal amphotericin B. J Pharm Sci 86:1066–1069Google Scholar
  51. Lamothe J (2001) Activity of amphotericin B in lipid emulsion in the initial treatment of canine leishmaniasis. J Small Anim Pract 42:170–175Google Scholar
  52. Linke HAB, Mechlinski W, Schaffner CP (1974) Production of amphotericin B-14C by Streptomyces nodosus fermentation, and preparation of the amphotericin B-14C-methyl-ester. J Antibiot 27:155–160PubMedGoogle Scholar
  53. Liu YT (1984) Biosynthetic studies of amphotericins, candicidin and nystatin by means of mutation. Proc Natl Sci Counc Repub China B 8:182–186Google Scholar
  54. Lopez-Velez R, Videla S, Marquez M, Boix V, Jimenez-Mejias ME, Gorgolas M, Arribas JR, Salas A, Laguna F, Sust M, Canavate C, Alvar J, Spanish HIV-Leishmania Study Group (2004) Amphotericin B lipid complex versus no treatment in the secondary prophylaxis of visceral leishmaniasis in HIV-infected patients. J Antimicrob Chemother 53:540–543Google Scholar
  55. Luke RG, Boyle JA (1998) Renal effects of amphotericin B lipid complex. Am J Kidney Dis 31:780–785Google Scholar
  56. Mbongo N, Loiseau PM, Billion MA, Robert-Gero M (1998) Mechanism of amphotericin B resistance in Leishmania donovani promastigotes. Antimicrob Agents Chemother 42:352–357Google Scholar
  57. McGarvey GJ, Mathys JA, Wilson KJ (1996) Synthesis of amphotericin B: a convergent strategy to the polyol segment of the heptaene macrolide antibiotics. J Org Chem 61:5704–5705Google Scholar
  58. McNamara CM, Box S, Crawforth JM, Hickman BS, Norwood TJ, Rawlings BJ (1998) Biosynthesis of amphotericin B. J Chem Soc Perkin Trans 1:83–87Google Scholar
  59. Meunier F, Prentice HG, Ringden O (1991) Liposomal amphotericin B (AmBisome): safety data from a phase II/III clinical trial. J Antimicrob Chemother 28[Suppl B]:83–91Google Scholar
  60. Milhaud J, Ponsinet V, Takashi M, Michels B (2002) Interactions of the drug amphotericin b with phospholipid membranes containing or not ergosterol: new insights into the role of ergosterol. Biochim Biophys Acta 1558:95–108Google Scholar
  61. Monji N, Mechlinski W, Shaffner CP (1976) Microbial production of amphotericin B-3H and the synthesis of its sodium desoxycholate (carboxyl-14C) complex and methyl-14C-ester. J Antibiot 29:438–443Google Scholar
  62. Montoro J, Sune-Martin M, Oliveras-Martin J (2001) Comparative pharmacokinetics of amphotericin B in its different formulations: the result of a meta-analysis. Eur Hosp Pharm 7:1–8Google Scholar
  63. Moribe K, Maruyama K (2002) Pharmaceutical design of the liposomal antimicrobial agents for infectious disease. Curr Pharm Des 8:441–454Google Scholar
  64. Morschhäuser J (2003) Resistenzen und Resistenzmechanismen. Pharm Unserer Zeit 32:124–128Google Scholar
  65. Mullen AB, Carter KC, Baillie (1997) Comparison of the efficacies of various formulations of amphotericin B against murine visceral leishmaniasis. Antimicrob Agents Chemother 41:2089–2092Google Scholar
  66. Müller R (1991) Colloidal carriers for controlled drug delivery and targeting. Wissenschaftliche Verlagsgesellschaft, StuttgartGoogle Scholar
  67. Müller R (1997) Nanosuspensionen-eine neue Formulierung für schwerlösliche Arzneistoffe. In: Hildebrand G (ed) Pharmazeutische Technologie: Moderne Arzneiformen. Wissenschaftliche Verlagsgesellschaft, StuttgartGoogle Scholar
  68. Müller R, Maassen S, Weyhers H, Mehnert W (1996) Phagocytic uptake and cytotoxicity of solid lipid nanoparticles (SLN) sterically stabilized with poloxamine 908 and poloxamer 407. J Drug Target 4:161–170Google Scholar
  69. Müller R, Mäder K, Gohla S (2000) Solid lipid nanoparticles (SLN) for controlled drug delivery—a review of the state of art. Eur J Pharm Biopharm 50:161–177Google Scholar
  70. Müller RH, Jacobs C, Kayser O (2001) Nanosuspensions as particulate drug formulations in therapy: rationale for development and what we can expect for the future. Adv Drug Deliv Rev 47:3–19Google Scholar
  71. Müller RH, Radtke M, Wissing SA (2002) Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv Drug Deliv Rev 54[Suppl 1]: S131–S155Google Scholar
  72. Nicolaou KC, Daines RA, Ogawa Y, Chakraborty TK (1988) Total synthesis of amphotericin B: 3 final stages. J Am Chem Soc 110:4696–4705Google Scholar
  73. Nikodinovic J, Barrow KD, Chuck J-A (2003) High frequency transformation of the amphotericin-producing bacterium Streptomyces nodosus. J Microbiol Methods 55:273–277Google Scholar
  74. Oliva G, Gradoni L, Ciaramella R, De Luna R, Cortese L, Orsini S, Davidson RN, Persechino A (1995) Activity of liposomal amphotericin B (AmBisome) in dogs naturally infected with Leishmania infantum. J Antimicrob Chemother 36:1013–1019Google Scholar
  75. O’Neil M, Lapointe M (1997) Administration of amphotericin B in lipid emulsion. Crit Care Med 25:892–893Google Scholar
  76. Ostrosky-Zeichner L, Marr KA, Rex JH, Cohen SH (2003) Amphotericin B: time for a new “gold standard”. Clin Infect Dis 37:415–425Google Scholar
  77. Oullette M, Drummelsmith J, Papadopoulou B (2004) Leishmaniasis: drugs in the clinics, resistances and new developments. Drug Resist Update 7:257–266Google Scholar
  78. Pahissa A (1997) Amphotericin B: lipid complex versus liposomes: which, why, when? Enferm Infecc Microbiol Clin 15:1–3Google Scholar
  79. Panosian CB, Barza M, Szoka F, Myler DJ (1984) Treatment of experimental cutaneous leishmaniasis with liposome-intercalated amphotericin B. Antimicrob Agents Chemother 25:655–656Google Scholar
  80. Papahadjopoulos D, Vail W, Jacobson K, Poste G (1975) Cochleate lipid cylinders: formation by fusion of unilamellar lipid vesicles. Biochim Biophys Acta 384:483–491Google Scholar
  81. Paquet MJ, Fournier I, Barwicz J, Tancrede P, Auger M (2002) The effects of amphotericin B on pure and ergosterol- or cholesterol-containing dipalmitoylphosphatidylcholine bilayers as viewed by 2H NMR. Chem Phys Lipids 119:1–11Google Scholar
  82. Paredes R, Munoz J, Diaz P, Domingo P, Gurgui M, Clodet B (2003) Leishmaniasis in HIV infection. J Postgrad Med 49:39–49Google Scholar
  83. Petit C, Yardley V, Gaboriau F, Bollard J, Croft SL (1999) Activity of a heat-induced reformulation of amphotericin B deoxycholate (fungizone) against Leishmania donovani. Antimicrob Agents Chemother 43:390–392Google Scholar
  84. Pfaller MA (2000) Antifungal susceptibility testing: progress and future developments. Braz J Infect Dis 4:55–60Google Scholar
  85. Pfaller MA, Yu WL (2001) Antifungal susceptibility testing: new technology and clinical applications. Infect Dis Clin N Am 15:1227–1261Google Scholar
  86. Plumb D (1999) Veterinary drug handbook. PharmaVet, White Bear LakeGoogle Scholar
  87. Ramos H, Brajtburg J, Marquez V, Cohen BE (1995) Comparison of the leishmanicidal activity of fungizone, liposomal AmB and amphotericin B incorporated into egg lecithin–bile salt mixed micelles. Drugs Exp Clin Res 21:211–216Google Scholar
  88. Ranchere JY, Latour JF, Fuhrmann C, Lagallarde C, Loreuil F (1996) Amphotericin B intralipid formulation: stability and particle size. J Antimicrob Chemother 37:1165–1169Google Scholar
  89. Robbie G, Chiou WL (1998) Elucidation of human amphotericin B pharmacokinetics: identification of a new potential factor affecting interspecies pharmacokinetic scaling. Pharm Res 15:1630–1636Google Scholar
  90. Santangelo R, Paderu P, Delmas G, Chen ZW, Mannico R, Zarif L, Perlin DS (2000) Efficacy of oral cochleate–amphotericin B in a mouse model of systemic candidiasis. Antimicrob Agents Chemother 44:2356–2360Google Scholar
  91. Sawaya BP, Briggs JP, Schnermann J (1995) Amphotericin B nephrotoxicity: the adverse consequences of altered membrane properties. J Am Soc Nephrol 6:154–164Google Scholar
  92. Schmitt S (2002) Parenterale O/W Emulsionen: Plasmaproteininteraktion und Interaktion von Arzneistoffen. PhD thesis, Freie Universität Berlin, BerlinGoogle Scholar
  93. Schöler N (2001) Feste Lipidnanopartikel (SLN) und Nanosuspensionen: In-vitro-Zytotoxizität und therapeutischer Einsatz am Modell der Reaktivierungstoxoplasmose der Maus. PhD thesis, Freie Universität Berlin, BerlinGoogle Scholar
  94. Schöler N, Krause K, Kayser O, Müller RH, Borner K, Hahn H, Liesenfeld O (2001) Atovaquone nanosuspensions show excellent therapeutic effect in a new murine model of reactivated toxoplasmosis. Antimicrob Agents Chemother 45:1771–1779Google Scholar
  95. Schwarz C, Mehnert W (1999) Solid lipid nanoparticles (SLN) for controlled drug delivery: II. Drug incorporation and physicochemical characterization. J Microencapsul 16:205–213Google Scholar
  96. Seggara I, Movshin D, Zarif L (2002) Pharmacokinetics and tissue distribution after intravenous administration of a single dose of amphotericin B cochleates, a new lipid based delivery system. J Pharm Sci 91:1827–1837Google Scholar
  97. Segovia M, Navarro A, Artero JM (1989) The effect of liposome-entrapped desferrioxamine on Leishmania donovani in vitro. Ann Trop Med Parasitol 83:357–360Google Scholar
  98. Seibold M, Tintelnot K (2003) Susceptibility testing of fungi—current status and open questions. Prog Drug Res [Spec No] 2003:191–241Google Scholar
  99. Sen N, Samanta A, Baidya S, Gupta B, Ghosh L (1998) Development of amphotericin B loaded nanoparticles. Boll Chim Farm 137:295–297Google Scholar
  100. Sievers TM, Kubak BM, Wong-Beringer A (1996) Safety and efficacy of intralipid emulsions of amphotericin B. J Antimicrob Chemother 38:333–347Google Scholar
  101. Sokol-Anderson ML, Brajtburg J, Medoff G (1986) Amphotericin B-induced oxidative damage and killing of Candida albicans. J Infect Dis 154:76–83Google Scholar
  102. Souza LC, Campa A (1999) Pharmacological parameters of intravenously administered amphotericin B in rats: comparison of the conventional formulation with amphotericin B associated with a triglyceride-rich emulsion. J Antimicrob Chemother 44:77–84Google Scholar
  103. National Committee for Clinical Laboratory Standards (1997) Reference method for broth dilution antifungal susceptibility testing of yeasts: approved standard M27-A. National Committee for Clinical Laboratory Standards, WayneGoogle Scholar
  104. Stevens D (1994) Overview of amphotericin B colloidal dispersion (amphocil). J Infect 28[Suppl 1]:45–49Google Scholar
  105. Sundar S (2001) Liposomal amphotericin B. Lancet 357:801–802Google Scholar
  106. Tiyaboonchai W, Woiszwillo J, Middaugh CR (2001) Formulation and characterization of amphotericin B-polyethylenimine–dextran sulfate nanoparticles. J Pharm Sci 90:902–914Google Scholar
  107. Tomii Y (2002) Lipid formulation as a drug carrier for drug delivery. Curr Pharm Des 8:467–474Google Scholar
  108. Venier-Julienne MC, Benoit JP (1996) Preparation, purification and morphology of polymeric nanoparticles as drug carriers. Pharm Acta Helv 71:121–128Google Scholar
  109. Walsh TJ, Goodman JL, Pappas P, Bekersky I, Buell DN, Roden M, Barrett J, Anaissie EJ (2001) Safety, tolerance, and pharmacokinetics of high-dose liposomal amphotericin B (AmBisome) in patients infected with Aspergillus species and other filamentous fungi: maximum tolerated dose study. Antimicrob Agents Chemother 45:3487–3496Google Scholar
  110. Warn PA, Sharp A, Guinea J, Denning DW (2004) Effect of hypoxic conditions on in vitro susceptibility testing of amphotericin B, itraconazole and micafungin against Aspergillus and Candida. J Antimicrob Chemother 53:743–749Google Scholar
  111. Weldon JS, Munnell JF, Hanson WL, Alving CR (1983) Liposomal chemotherapy in visceral leishmaniasis: an ultrastructural study of an intracellular pathway. Z Parasitenkd 69:415–424Google Scholar
  112. Windholz M, Budavari S, Blumetti R, Otterbein E (1983) Amphothericin B. In: The Merck index. Merck, New York, p. 2194Google Scholar
  113. Yardley V, Croft SL (2000) A comparison of the activities of three amphotericin B lipid formulations against experimental visceral and cutaneous leishmaniasis. Int J Antimicrob Agents 13:243–248Google Scholar
  114. Zager RA (2000) Polyene antibiotics: relative degrees of in vitro cytotoxicity and potential effects on tubule phospholipid and ceramide content. Am J Kidney Dis 36:238–249Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Institute of Pharmacy, Pharmaceutical Technology, Biotechnology, and Quality ManagementFreie Universität BerlinBerlinGermany
  2. 2.Cellular Immunology UnitRobert Koch-InstitutBerlinGermany
  3. 3.Pharmaceutical BiologyRijksuniversiteit Groningen GUIDEGroningenThe Netherlands

Personalised recommendations