Applied Microbiology and Biotechnology

, Volume 67, Issue 6, pp 715–726 | Cite as

The remarkable Rhodococcus erythropolis

  • Carla C. C. R. de CarvalhoEmail author
  • M. Manuela R. da Fonseca


Rhodococcus erythropolis cells contain a large set of enzymes that allow them to carry out an enormous number of bioconversions and degradations. Oxidations, dehydrogenations, epoxidations, hydrolysis, hydroxylations, dehalogenations and desulfurisations have been reported to be performed by R. erythropolis cells or enzymes. This large array of enzymes fully justifies the prospective application of this bacterium in biotechnology.


Limonene Rhodococcus Epoxide Hydrolase Carvone Dehalogenase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by a PhD grant (PRAXIS XXI/BD/21574/99) and a post-doctoral grant (SFRH/BPD/14426/2003) awarded to C.C.C.R.C. by the Fundação para a Ciência e a Tecnologia, Portugal.


  1. Aggelis G, Iconomou D, Christou M, Bokas D, Kotzailias S, Christou G, Tsagou V, Papanikolaou S (2003) Phenolic removal in a model olive oil mill wastewater using Pleurotus ostreatus in bioreactor cultures and biological evaluation of the process. Water Res 37:3897–3904Google Scholar
  2. Allen CCR, Boyd DR, Dalton H, Sharma ND, Brannigan I, Kerley NA, Sheldrake GN, Taylor SC (1995) Enantioselective bacterial biotransformation routes to cis-diol metabolites of monosubstituted benzenes, naphthalene and benzocycloalkenes of either absolute configuration. J Chem Soc Chem Commun 2:117–118Google Scholar
  3. Amanullah A, Hewitt CJ, Nienow AW, Lee C, Chartrain M, Buckland BC, Drew SW, Woodley JM (2002) Fed-batch bioconversion of indene to cis-indandiol. Enzyme Microb Technol 31:954––967Google Scholar
  4. Andreoni V, Bernasconi S, Colombo M, Beilen JB van, Cavalca L (2000) Detection of genes for alkane and naphthalene catabolism in Rhodococcus sp. strain 1BN. Environ Microbiol 2:572–577Google Scholar
  5. Armfield SJ, Sallis PJ, Baker PB, Bull AT, Hardman DJ (1995) Dehalogenation of haloalkanes by Rhodococcus erythropolis Y2. Biodegradation 6:237–246PubMedGoogle Scholar
  6. Ashraf W, Mihdhir A, Murrell, JC (1994) Bacterial oxidation of propane. FEMS Microbiol Lett 122:16Google Scholar
  7. Ayala M, Tinoco R, Hernandez V, Bremauntz P, Vazquez-Duhalt R (1998) Biocatalytic oxidation of fuel as an alternative to biodesulfurization. Fuel Process Technol 57:101111Google Scholar
  8. Barbirato F, Verdoes JC, Bont JAM de, Werf MJ van der (1998) The Rhodococcus erythropolis DCL14 limonene-1,2-epoxide hydrolase gene encodes an enzyme belonging to a novel class of epoxide hydrolases. FEBS Lett 438:293296Google Scholar
  9. Beard TM, Page MI (1998) Enantioselective biotransformations using rhodococci. Antonie van Leeuwenhoek 74:99106Google Scholar
  10. Bell K, Philp J, Aw D, Christofi N (1998) The genus Rhodococcus. J Appl Microbiol 85:195210Google Scholar
  11. Boersma MG, Solyanikova IP, Van Berkel WJH, Vervoort J, Golovleva LA, Rietjens IMCM (2001) F-19 NMR metabolomics for the elucidation of microbial degradation pathways of fluorophenols. J Ind Microbiol Biotechnol 26:2234Google Scholar
  12. Bondar VS, Boersma MG, Golovlev EL, Vervoort J, Van Berkel WJH, Finkelstein ZI, Solyanikova IP, Golovleva LA, Rietjens IMCM (1998) 19F NMR study on the biodegradation of fluorophenols by various Rhodococcus species. Biodegradation 9:475486Google Scholar
  13. Borole AP, Kaufman EN, Grossman MJ, Minak-Bernero V, Bare R, Lee MK (2002) Comparison of the emulsion characteristics of Rhodococcus erythropolis and Ecsherichia coli SOXC-5 cells expressing biodesulfurization genes. Biotechnol Prog 18:8893Google Scholar
  14. Boswell C (1999) The technology frontier: alkane activation. Chem Market Rep, NY, December 1999Google Scholar
  15. Brandão PFB, Clapp JP, Bull AT (2003) Diversity of nitrile hydratase and amidase enzyme genes in Rhodococcus erythropolis recovered from geographically distinct habitats. Appl Environ Microbiol 69:57545766Google Scholar
  16. Brown E, Hendler E (1989) Rhodococcus peritonitis in a patient treated with peritoneal dialysis. Am J Kidney Dis 14:417418Google Scholar
  17. Buckland BC, Drew SW, Connors NC, Chartrain MM, Lee C, Salmon PM, Gbewonyo K, Zhou W, Gailliot P, Singhvi R, Olewinski RC Jr, Sun W-J, Reddy J, Zhang J, Jackey BA, Taylor C, Goklen KE, Junker B, Greasham RL (1999) Microbial conversion of indene to indandiol: a key intermediate in the synthesis of Crixivan. Metab Eng 1:6374Google Scholar
  18. Chartrain M, Jackey B, Taylor C, Sandford V, Gbewonyo K, Lister L, Dimichele L, Hirsch C, Heimbuch B, Maxwell C, Pascoe D, Buckland B, Greasham R (1998) Bioconversion of indene to cis-(lS,2R)-indandiol and trans-(lR,2R)-indandiol by Rhodococcus species. J Ferment Bioeng 86:550558Google Scholar
  19. de Carvalho CCCR, da Fonseca MMR (2002a) Maintenance of cell viability in the biotransformation of (–)-carveol with whole cells of Rhodococcus erythropolis. J Mol Catal B Enzym 19:389398Google Scholar
  20. Carvalho CCCR de, Fonseca MMR da (2002b) Influence of reactor configuration on the production of carvone from carveol by whole cells of Rhodococcus erythropolis DCL14. J Mol Catal B Enzym 19:377387Google Scholar
  21. Carvalho CCCR de, Fonseca MMR da (2003) A simple method to observe organic solvent drops with a standard optical microscope. Microsc Res Tech 60:465466Google Scholar
  22. Carvalho CCCR de, Fonseca MMR da (2004a) Principal component analysis applied to bacterial cell behaviour in the presence of organic solvents. Biocatal Biotransform 22:203214Google Scholar
  23. Carvalho CCCR de, Fonseca MMR da (2004b) Solvent toxicity in organic–aqueous systems analysed by multivariate analysis. Bioprocess Biosyst Eng 26:361–375Google Scholar
  24. Carvalho CCCR de, Fonseca MMR da (2005) Degradation of hydrocarbons and alcohols at different temperatures and salinities by Rhodococcus erythropolis DCL14. FEMS Microbiol Ecol 51:389–399Google Scholar
  25. Carvalho CCCR de, Keulen F van, Fonseca MMR da (2000a) Biotransformation of limonene-1,2-epoxide to limonene-1,2-diol by Rhodococcus erythropolis cells—an introductory approach to selective hydrolysis and product separation. Food Technol Biotechnol 38:181–185Google Scholar
  26. Carvalho CCCR de, Keulen F van , Fonseca MMR da (2000b) Production and recovery of limonene-1,2-diol and simultaneous resolution of a diastereomeric mixture of limonene-1,2-epoxide with whole cells of Rhodococcus erythropolis DCL14. Biocatal Biotransform 18:223–235Google Scholar
  27. Carvalho CCCR de, Keulen F van, Fonseca MMR da (2002) Modelling the biokinetic resolution of diastereomers present in unequal initial amounts. Tetrahedron Asymm 13:1637–1643CrossRefGoogle Scholar
  28. Carvalho CCCR de, Cruz A, Pons MN, Pinheiro HM, Cabral JMS, Fonseca MMR da, Fernandes P, Ferreira BS (2004) Mycobacterium sp., Rhodococcus erythropolis and Pseudomonas putida behaviour in the presence of organic solvents. Microsc Res Tech 64:215–222Google Scholar
  29. Carvalho CCCR de, Parreño-Marchante B, Neumann G, Fonseca MMR da, Heipieper HJ (2005) Adaptation of Rhodococcus erythropolis DCL14 to growth on n-alkanes, alcohols and terpenes. Appl Microbiol Biotechnol DOI  10.1007/s00253-004-1750-z
  30. Olmo CH del, Santos VE, Alcon A, Garcia-Ochoa F (2004) Production of a Rhodococcus erythropolis IGTS8 biocatalyst for DBT biodesulfurization: influence of operational conditions. Biochem Eng J 22:229–237Google Scholar
  31. Dieth S, Tritsch D, Biellmann JF (1995) Resolution of allylic alcohols by cholesterol oxidase isolated from Rhodococcus erythropolis. Tetrahedron Lett 36:2243–2246Google Scholar
  32. Duetz WA, Beilen JB van, Witholt B (2001) Using proteins in their natural environment: potential and limitations of microbial whole-cell hydroxylations in applied biocatalysis. Curr Opin Biotechnol 12:419–425Google Scholar
  33. Duman JG, Olsen TM (1993) Thermal hysteresis protein activity in bacteria, fungi, and phylogenetically diverse plants. Cryobiology 30:322–328Google Scholar
  34. Effenberger F, Graef BW (1998) Chemo- and enantioselective hydrolysis of nitriles and acid amides, respectively, with resting cells of Rhodococcus sp. C3II and Rhodococcus erythropolis MP50. J Biotechnol 60:165–174Google Scholar
  35. Effenberger F, Graef BW, Osswald S (1997) Preparation of (S)-naproxen by enantioselective hydrolysis of racemic naproxen amide with resting cells of Rhodococcus erythropolis MP50 in organic solvents. Tetrahedron Asymm 8:2749–2755Google Scholar
  36. Emelyanova EV, Reshetilov AN (2002) Rhodococcus erythropolis as the receptor of cell-based sensor for 2,4-dinitrophenol detection: effect of co-oxidation? Process Biochem 37:683–692Google Scholar
  37. Erable B, Maugard T, Goubet I, Lamare S, Legoy MD (2005) Biotransformation of halogenated compounds by lyophilized cells of Rhodococcus erythropolis in a continuous solid–gas biofilter. Process Biochem 40:45–51Google Scholar
  38. Finnerty WR (1992) The biology and genetics of the genus Rhodococcus. Annu Rev Microbiol 46:193–218Google Scholar
  39. Finnerty WR (1994) Biosurfactants in environmental biotechnology. Curr Opin Biotechnol 5:291–295Google Scholar
  40. French JB, Holland G, Holland HL, Gordon HL (2004) A comparative molecular field analysis of the biotransformation of sulfides by Rhodococcus erythropolis. J Mol Catal B Enzym 31:87–96Google Scholar
  41. Goetschel R, Barenholz Y, Bar R (1992) Microbial conversions in a liposomal medium. 2. Cholesterol oxidation by Rhodococcus erythropolis. Enzyme Microb Technol 14:390–395Google Scholar
  42. Goswami M, Shivaraman N, Singh RP (2004) Microbial metabolism of 2-chlorophenol, phenol and p-cresol by Rhodococcus erythropolis M1 in co-culture with Pseudomonas fluorescens P1. Microbiol Res DOI  10.1016/j.micres.2004.10.004
  43. Gotor V, Quirós M, Liz R, Frigola J, Fernández R (1997) Fungal and bacterial regioselective hydroxylation of pyrimidine heterocycles. Tetrahedron 53:6421–6432Google Scholar
  44. Gray KA, Pogrebinsky OS, Mrachko GT, Xi L, Monticello DJ, Squires CH (1996) Molecular mechanisms of biocatalytic desulfurization of fossil fuels. Nat Biotechnol 14:1705–1709Google Scholar
  45. Griffith M, Ewart KV (1995) Antifreeze proteins and their potential use in frozen foods. Biotechnol Adv 13:375–402Google Scholar
  46. Gröger H, Hummel W, Rollmann C, Chamouleau F, Hüsken H, Werner H, Wunderlich C, Abokitse K, Drauzd K, Buchholza S (2004) Preparative asymmetric reduction of ketones in a biphasic medium with an (S)-alcohol dehydrogenase under in situ-cofactor-recycling with a formate dehydrogenase, Tetrahedron 60:633–640Google Scholar
  47. Heald SC, Brandão PFB, Hardicre R, Bull AT (2001) Physiology, biochemistry and taxonomy of deep-sea nitrile metabolising Rhodococcus strains. Antonie van Leeuwenhoek 80:169–183Google Scholar
  48. Heipieper HJ, Weber FJ, Sikkema J, Keweloh H, Bont JAM de (1994) Mechanisms behind resistance of whole cells to toxic organic solvents. Trends Biotechnol 12:409–415CrossRefGoogle Scholar
  49. Hidalgo A, Jaureguibeitia A, Prieto MB, Rodriguez-Fernández C, Serra JL, Llama MJ (2002) Biological treatment of phenolic industrial wastewaters by Rhodococcus erythropolis UPV-1. Enzyme Microb Technol 31:221–226Google Scholar
  50. Hirasawa K, Ishii Y, Kobayashi M, Koizumi K, Maruhashi K (2001) Improvement of desulfurization activity in Rhodococcus erythropolis KA2-5-1 by genetic engineering. Biosci Biotechnol Biochem 65:239–246Google Scholar
  51. Hirrlinger B, Stolz A, Knackmuss HJ (1996) Purification and properties of an amidase from Rhodococcus erythropolis MP50 which enantioselectively hydrolyzes 2-arylpropionamides. J Bacteriol 178:3501–3507Google Scholar
  52. Holland HL, Brown FM, Kerridge A, Pienkos P, Arensdor J (2003) Biotransformation of sulfides by Rhodocoeccus erythropolis. J Mol Catal B Enzym 22:219–223Google Scholar
  53. Jadoun J, Bar R (1993a) Microbial transformations in a cyclodextrin medium. 3. Cholesterol oxidation by Rhodococcus erythropolis. Appl Microbiol Biotechnol 40:230–240Google Scholar
  54. Jadoun J, Bar R (1993b) Microbial transformations in a cyclodextrin medium. 4. Enzyme vs microbial oxidation of cholesterol. Appl Microbiol Biotechnol 40:477–482Google Scholar
  55. Janssen DB, Oppentocht JE, Poelarends GP (2001) Microbial dehalogenation. Curr Opin Biotechnol 12:254–258Google Scholar
  56. Katsivela E, Bonse D, Kruger A, Strompl C, Livingston A, Wittich RM (1999) An extractive membrane biofilm reactor for degradation of 1,3-dichloropropene in industrial waste water. Appl Microbiol Biotechnol 52:853–862Google Scholar
  57. Kayser KJ, Bielaga-Jones BA, Jackowski K, Odusan O, Kilbane JJ (1993) Utilization of organosulphur compounds by axenic and mixed cultures of Rhodococcus rhodochrous IGTS8. J Gen Microbiol 139:3123–3129Google Scholar
  58. Kobayashi M, Shimizu S (2000) Nitrile hydrolases. Curr Opin Chem Biol 4:95–102Google Scholar
  59. Kulikova AK, Bezborodov AM (1999) Ethylene epoxidation by native and immobilized cells of the propane-assimilating culture Rhodococcus erythropolis 3/89. Appl Biochem Microbiol 35:543–547Google Scholar
  60. Kulikova AK, Bezborodov AM (2000) Oxidation of organic compounds by propane monooxygenase of Rhodococcus erythropolis 3/89. Appl Biochem Microbiol 36:227–230Google Scholar
  61. Kulikova AK, Bezborodov AM (2001) Assimilation of propane and characterization of propane monooxygenase from Rhodococcus erythropolis 3/89. Appl Biochem Microbiol 37:164–167Google Scholar
  62. Kumar I, Manju K, Jolly RS (2001) A new biocatalyst for the preparation of enantiomerically pure 2-arylpropanoic acids. Tetrahedron Asymm 12:1431–1434Google Scholar
  63. Kurane R, Tomizuka N (1992) Towards new biomaterial produced by microorganism—bioflocculant and bioabsorbent. Nippon Kagaku Kaishi 5:453–463Google Scholar
  64. Langdahl BR, Bisp P, Ingoorsen K (1996) Nitrile hydrolysis by Rhodococcus erythropolis BL1, an acetonitrile-tolerant strain isolated from a marine sediment. Microbiology 142:145–154Google Scholar
  65. Layh N, Knackmuss HJ, Stolz A (1995) Enantioselective hydrolysis of ketoprofen amide by Rhodococcus sp. C3II and Rhodococcus erythropolis MP-50. Biotechnol Lett 17:187–192Google Scholar
  66. Margesin R, Labbé D, Schinner F, Greer CW, Whyte LG (2003) Characterization of hydrocarbon-degrading microbial populations in contaminated and pristine alpine soils. Appl Environ Microbiol 69:3085–3092Google Scholar
  67. Matsubara T, Ohshiro T, Nishina Y, Izumi Y (2001) Purification, characterization and overexpression of flavin reductase involved in dibenzothiophene desulfurization by Rhodococcus erythropolis D-1. Appl Environ Microbiol 67:1179–1184Google Scholar
  68. Mischitz M, Hackinger A, Francesconi I, Faber K (1994) Enzyme-triggered opening of an epoxide—chemoenzymatic synthesis of (2R,5R)-pityol and (2S,5R)-pityol. Tetrahedron 50:8661–8664Google Scholar
  69. Nagy I, Schoofs G, Compernolle F, Proost P, Vanderleyden J, Demot R (1995) Degradation of the thiocarbamate herbicide EPTC (S-ethyl dipropylcarbamothioate) and biosafening by Rhodococcus sp. strain NI86/21 involve an inducible cytochrome-P-450 system and aldehyde dehydrogenase. J Bacteriol 177:676–687Google Scholar
  70. Nakayama N, Matsubara T, Ohshiro T, Moroto Y, Kawata Y, Koizumi K, Hirakawa Y, Suzuki M, Maruhashi K, Izumi Y, Kurane R (2002) A novel enzyme, 2α-hydroxybiphenyl-2-sulfinate desulfinase (DszB), from a dibenzothiophene-desulfurizing bacterium Rhodococcus erythropolis KA2-5-1: gene overexpression and enzyme characterization. Biochim Biophys Acta 1598:122–130Google Scholar
  71. Neu TR (1996) Significance of bacterial surface-active compounds in interaction of bacteria with surfaces. Microbiol Rev 60:151–166Google Scholar
  72. O’Brien XM, Parker JA, Lessard PA, Sinskey AJ (2002) Engineering an indene bioconversion process for the production of cis-aminoindanol: a model system for the production of chiral synthons. Appl Microbiol Biotechnol 59:389–399Google Scholar
  73. Ohshiro T, Izumi Y (1999) Microbial desulfurization of organic sulfur compounds in petroleum. Biosci Biotechnol Biochem 63:1–9Google Scholar
  74. Ohshiro T, Suzuki K, Izumi Y (1997) Dibenzothiophene (DBT) degrading enzyme responsible for the first step of DBT desulfurization by Rhodococcus erythropolis D-1: purification and characterization. J Ferment Bioeng 83:233–237CrossRefGoogle Scholar
  75. Ohshiro T, Kojima T, Torii K, Kawasoe H, Izumi Y (1999) Purification and characterization of dibenzothiophene (DBT) sulfone monooxygenase, an enzyme involved in DBT desulfurization, from Rhodococcus erythropolis D-1. J Biosci Bioeng 88:610–616Google Scholar
  76. Onaka T, Kobayashi M, Ishii Y, Konishi J, Maruhashi K (2001) Selective cleavage of the two C–S bonds in asymmetrically alkylated dibenzothiophenes by Rhodococcus erythropolis KA2-5-1. J Biosci Bioeng 92:80–82Google Scholar
  77. Osprian I, Fechter MH, Griengl H (2003) Biocatalytic hydrolysis of cyanohydrins: an efficient approach to enantiopure α-hydroxyl carboxylic acids. J Mol Catal B Enzym 24/25:89–98Google Scholar
  78. Overbeeke PLA, Schenkels P, Secundo F, Jongejan JA (2003) Biocatalytic synthesis of cyclopropanol from cyclopropyl methyl ketone using whole cells of Rhodococcus erythropolis. J Mol Catal B Enzym 21:51–53Google Scholar
  79. Pienkos PT (1998) Choosing the best platform for the biotransformation of hydrophobic molecules. Proc Int Symp Microb Ecol 8Google Scholar
  80. Poelarends GJ, Kulakov LA, Larkin MJ, Vlieg JETH, Janssen DB (2000) Roles of horizontal gene transfer and gene integration in evolution of 1,3-dichloropropene- and 1,2-dibromoethane-degradative pathways. J Bacteriol 182:2191–2199Google Scholar
  81. Prieto MB, Hidalgo A, Serra JL, Llama MJ (2002) Degradation of phenol by Rhodococcus erythropolis UPV-1 immobilized on Biolite® in a packed-bed reactor. J Biotechnol 97:1–11Google Scholar
  82. Schenkels P, Duine JA (2000) Nicotinoprotein (NADH-containing) alcohol dehydrogenase from Rhodococcus erythropolis DSM 1069: an efficient catalyst for coenzyme-independent oxidation of a broad spectrum of alcohols and the inversion of alcohols and aldehydes. Microbiology 146:775–785Google Scholar
  83. Schenkels P, De Vries S, Straathof AJJ (2001) Scope and limitations of the use of nicotinoprotein alcohol dehydrogenase for the coenzyme-free production of enantiopure fine-chemicals. Biocatal Biotransform 19:191–212Google Scholar
  84. Sokolovská I, Rozenberg R, Riez C, Rouxhet PG, Agathos SN, Wattiau P (2003) Carbon source-induced modifications in the mycolic acid content and cell wall permeability of Rhodococcus erythropolis E1. Appl Environ Microbiol 69:7019–7027CrossRefPubMedGoogle Scholar
  85. Stolz A, Trott S, Binder M, Bauer R, Hirrlinger B, Layh N, Knackmuss HJ (1998) Enantioselective nitrile hydratases and amidases from different bacterial isolates. J Mol Catal B Enzym 5:137–141Google Scholar
  86. Straathof AJJ, Panke S, Schmid A (2002) The production of fine chemicals by biotransformations. Curr Opin Biotechnol 13:548–556Google Scholar
  87. Suemori A, Nakajima K, Kurane R, Nakamura Y (1996) Purification and characterization of o-hydroxyphenylacetate 5-hydroxylase, m-hydroxyphenylacetate 6-hydroxylase and p-hydroxyphenylacetate 1-hydroxylase from Rhodococcus erythropolis. J Ferment Bioeng 81:133–137Google Scholar
  88. Beilen JB van, Neuenschwander M, Smits THM, Roth C, Balada SB, Witholt B (2002) Rubredoxins involved in alkane oxidation. J Bacteriol 184:1722–1732Google Scholar
  89. Geize R van der, Dijkhuizen L (2004) Harnessing the catabolic diversity of rhodococci for environmental and biotechnological applications. Curr Opin Microbiol 7:255–261Google Scholar
  90. Geize R van der, Hessels GI, Dijkhuizen L (2002a) Molecular and functional characterization of the kstD2 gene of Rhodococcus erythropolis SQ1 encoding a second 3-ketosteroid Delta(1)-dehydrogenase isoenzyme. Microbiology 148:3285–3292Google Scholar
  91. Geize R van der, Hessels GI, Gerwen R van, Meijden R van der, Dijkhuizen L (2002b) Molecular and functional characterisation of kshA and kshB, encoding two components of 3-ketosteroid 9 alpha-hydroxylase, a class IA monooxygenase, in Rhodococcus erythropolis strain SQ1. Mol Microbiol 45:1007–1018Google Scholar
  92. Vlugt-Bergmans C van der, Werf MJ van der (2001) Genetic and biochemical characterization of a novel monoterpene epsilon—lactone hydrolase from Rhodococcus erythropolis DCL14. Appl Environ Microbiol 67:733–741Google Scholar
  93. Werf MJ van der, Boot AM (2000) Metabolism of carveol and dihydrocarveol in Rhodococcus erythropolis DCL14. Microbiology 146:1129–1141Google Scholar
  94. Werf MJ van der, Swarts HJ, Bont JAM de (1999a) Rhodococcus erythropolis DCL14 contains a novel degradation pathway for limonene. Appl Environ Microbiol 65:2092–2102Google Scholar
  95. Werf MJ van der, Ven C van der, Barbirato F, Eppink MHM, Bont JAM de, Van Berkel WJH (1999b) Stereoselective carveol dehydrogenase from Rhodococcus erythropolis DCL14—a novel nicotinoprotein belonging to the short chain dehydrogenase/reductase superfamily. J Biol Chem 274:26296–26304CrossRefPubMedGoogle Scholar
  96. Werf MJ van der, Orru RVA, Overkamp KM, Swarts HJ, Osprian I, Steinreiber A, Bont JAM de, Faber K (1999c) Substrate specificity and stereospecificity of limonene-1,2-epoxide hydrolase from Rhodococcus erythropolis DCL14; an enzyme showing sequential and enantioconvergent substrate conversion. Appl Microbiol Biotechnol 52:380–385Google Scholar
  97. Vazquez-Duhalt R, Torres E, Valderrama B, Le Borgne S (2002) Will biochemical catalysis impact the petroleum refining industry? Energy Fuels 16:1239–1250Google Scholar
  98. Vernazza PL, Bodmer T, Galeazzi RL (1991) Rhodococcus erythropolis infection in HIV-associated immunodeficiency. Schweiz Med Wochenschr 121:1095–1098Google Scholar
  99. Wang P, Krawiec S (1996) Kinetic analyses of desulfurization of dibenzothiophene by Rhodococcus erythropolis in batch and fed-batch cultures. Appl Environ Microbiol 62:1670–1675Google Scholar
  100. Wang P, Humphrey AE, Krawiec S (1996) Kinetic analyses of desulfurization of dibenzothiophene by Rhodococcus erythropolis in continuous cultures. Appl Environ Microbiol 62:3066–3068Google Scholar
  101. Warhurst AM, Fewson CA (1994) Biotransformations catalyzed by the genus Rhodococcus. Crit Rev Biotechnol 14:29–73Google Scholar
  102. Whyte LG, Schultz A, van Beilen JB, Luz AP, Pellizari D, Labbé D, Greer CW (2002a) Prevalence of alkane monooxygenase genes in arctic and antarctic hydrocarbon-contaminated and pristine soils. FEMS Microbiol Ecol 41:141–150Google Scholar
  103. Whyte LG, Smits THM, Labbé D, Witholt B, Greer CW, Beilen JB van (2002b) Gene cloning and characterization of multiple alkane hydroxylase systems in Rhodococcus strains Q15 and NRRL B-16531. Appl Environ Microbiol 12:5933–5942Google Scholar
  104. Yan H, Kishimoto M, Omasa T, Katakura Y, Suga K, Okumura K, Yoshikawa O (2000) Increase in desulfurization activity of Rhodococcus erythropolis KA2-5-1 using ethanol feeding. J Biosci Bioeng 89:361–366Google Scholar
  105. Yoshikawa O, Ishii Y, Koizumi K, Ohshiro T, Izumi Y, Maruhashi K (2002) Enhancement and stabilization of desulfurization activity of Rhodococcus erythropolis KA2-5-1 by feeding ethanol and sulfur compounds. J Biosci Biotechnol 94:447–452Google Scholar
  106. Zaks A (2001) Industrial biocatalysis. Curr Opin Chem Biol 5:130–136Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Carla C. C. R. de Carvalho
    • 1
    Email author
  • M. Manuela R. da Fonseca
    • 1
  1. 1.Centro de Engenharia Biológica e QuímicaInstituto Superior TécnicoLisboaPortugal

Personalised recommendations