Applied Microbiology and Biotechnology

, Volume 67, Issue 5, pp 577–591 | Cite as

Xylanases from fungi: properties and industrial applications

  • M. L. T. M. PolizeliEmail author
  • A. C. S. Rizzatti
  • R. Monti
  • H. F. Terenzi
  • J. A. Jorge
  • D. S. Amorim


Xylan is the principal type of hemicellulose. It is a linear polymer of β-D-xylopyranosyl units linked by (1–4) glycosidic bonds. In nature, the polysaccharide backbone may be added to 4-O-methyl-α-D-glucuronopyranosyl units, acetyl groups, α-L-arabinofuranosyl, etc., in variable proportions. An enzymatic complex is responsible for the hydrolysis of xylan, but the main enzymes involved are endo-1,4-β-xylanase and β-xylosidase. These enzymes are produced by fungi, bacteria, yeast, marine algae, protozoans, snails, crustaceans, insect, seeds, etc., but the principal commercial source is filamentous fungi. Recently, there has been much industrial interest in xylan and its hydrolytic enzymatic complex, as a supplement in animal feed, for the manufacture of bread, food and drinks, textiles, bleaching of cellulose pulp, ethanol and xylitol production. This review describes some properties of xylan and its metabolism, as well as the biochemical properties of xylanases and their commercial applications.


Lignin Cellulase Hemicellulose Xylitol Black Liquor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Almeida EM, Polizeli MLTM, Terenzi HF, Jorge JA (1995) Purification and biochemical characterization of β-xylosidase from Humicola grisea var. thermoidea. FEMS Microbiol Lett 130:171–176CrossRefGoogle Scholar
  2. Andrade CMMC, Pereira N Jr, Antranikian G (1999) Extremely thermophilic microorganisms and their polymer-hydrolytic enzymes. Rev Microbiol 30:287–298Google Scholar
  3. Andrade SV, Polizeli MLTM, Terenzi HF, Jorge JA (2004) Effect of carbon source on the biochemical properties of the β-xylosidase produced by Aspergillus versicolor. Process Biochem 39:1931–1938CrossRefGoogle Scholar
  4. Anthony T, Raj KC, Rajendran A, Gunasekaran P (2003) High molecular weight cellulase-free xylanases from alkali-tolerant Aspergillus fumigatus AR1. Enzyme Microb Technol 32:647–654CrossRefGoogle Scholar
  5. Araújo JHB, Moraes FF, Zanin GM (1999) Bleaching of kraft pulp with commercial xylanases. Appl Biochem Biotechnol 77–79:713–722CrossRefGoogle Scholar
  6. Aristidou A, Pentillä M (2000) Metabolic engineering applications to renewable resource utilization. Curr Opin Biotechnol 11:187–198CrossRefGoogle Scholar
  7. Baitaillon M, Cardinali APN, Castillon N, Duchiron F (2000) Purification and characterization of a moderately thermostable xylanase from Bacillus sp. strain SPS-0. Enzyme Microb Technol 26:187–192CrossRefGoogle Scholar
  8. Bajpai P (1999) Application of enzymes in the pulp and paper industry. Biotechnol Prog 15:147–157CrossRefGoogle Scholar
  9. Baraznenok VA, Becker EG, Ankudimova NV, Okunev NN (1999) Characterization of neutral xylanases from Chaetomium cellulolyticum and their biobleaching effect on eucalyptus pulp. Enzyme Microb Technol 25:651–659CrossRefGoogle Scholar
  10. Bayer EA, Morag E, Lamed R (1994) The cellulosome—a treasure-trove for biotechnology. Trends Biotechnol 12:379–386CrossRefGoogle Scholar
  11. Beg QK, Bhushan B, Kapoor M, Hoondal GS (2000) Enhanced production of a thermostable xylanase from Streptomyces sp. QG-11-3 and its application in biobleaching of eucalyptus kraft pulp. Enzyme Microb Technol 27:459–466CrossRefGoogle Scholar
  12. Beg QK, Kapoor M, Mahajan L Hoondal GS (2001) Microbial xylanases and their industrial applications: a review. Appl Microbiol Biotechnol 56:326–338CrossRefGoogle Scholar
  13. Bhat MK (2000) Cellulases and related enzymes in biotechnology. Biotechnol Adv 18:355–383CrossRefGoogle Scholar
  14. Biely P (1985) Microbial xylanolytic systems. Trends Biotechnol 3:286–290CrossRefGoogle Scholar
  15. Biely P (1993) Biochemical aspects of the production of microbial hemicellulases. In: Cougland, MP, Hazlewood, GP (eds) Hemicelluloses and hemicellulases. Portland Press, London, pp 29–52Google Scholar
  16. Biely P, Vrsanská M, Tenkanen M, Kluepfel D (1997) Endo-α-1,4-xylanase families: differences in catalytic properties. J Biotechnol 57:151–166CrossRefPubMedGoogle Scholar
  17. Bim MA, Franco TT (2000) Extraction in aqueous two-phase systems of alkaline xylanase produced by Bacillus pumilus and its application in kraft pulp bleaching. J Chromatogr 43:349–356Google Scholar
  18. Blum DL, Li X-L, Chen H, Ljungdahl LG (1999) Characterization of an acetyl xylan esterase from the anaerobic fungus Orpinomyces sp. strain PC-2. Appl Environ Microbiol 65:3990–3995Google Scholar
  19. Brühlmann F, Leupin M, Erismann KH, Fiechter A (2000) Enzymatic degumming of ramie bast fibers. J Biotechnol 76:43–50CrossRefGoogle Scholar
  20. Bruins ME, Janssen AE, Boom RM (2001) Thermozymes and their applications: a review of recent literature and patents. Appl Biochem Biotechnol 90:155–186CrossRefGoogle Scholar
  21. Buchert J, Ranua M, Kantelinem A, Viikari L (1992) The role of two Trichoderma reesei xylanases in the bleaching of kraft pulp. Appl Microbiol Biotechnol 37:825–829CrossRefGoogle Scholar
  22. Camacho NA, Aguilar OG (2003) Production, purification and characterization of a low molecular mass xylanase from Aspergillus sp. and its application in bakery. Appl Biochem Biotechnol 104:159–172CrossRefGoogle Scholar
  23. Carmona EC, Brochetto-Braga MR, Pizzirani-Kleiner AA, Jorge JA (1998) Purification and biochemical characterization of an endoxylanase from Aspergillus versicolor. FEMS Microbiol Lett 166:311–315CrossRefGoogle Scholar
  24. Caufrier F, Martinou A, Dupont C, Bouriotis V (2003) Carbohydrate esterase family 4 enzymes: substrate specificity. Carbohydr Res 338(7):687–692CrossRefGoogle Scholar
  25. Chadha BS, Ajay BK, Mellon F, Bhat MK (2004) Two endoxylanases active and stable at alkaline pH from the newly isolated thermophilic fungus, Myceliophthora sp. IMI 387099. J Biotechnol 109:227–237CrossRefGoogle Scholar
  26. Chavez R, Schachter K, Navarro C, Peirano A, Aguirre C, Bull P, Eyzaguirre J (2002) Differences in expression of two endoxylanase genes (xynA and xynB) from Penicillium purpurogenum. Gene 293(1–2):161–168CrossRefGoogle Scholar
  27. Chen X, Whitmire D, Bowen JP (1996) Xylanase homology modeling using the inverse protein folding approach. Protein Sci 5(4):705–708Google Scholar
  28. Christakopoulos P, Nerinckx W, Kekos D, Macris B, Claeyssens M (1996) Purification and characterization of two low molecular mass alkaline xylanases from Fusarium oxysporum F3. J Biotechnol 51:181–189CrossRefGoogle Scholar
  29. Christov LP, Prior BA (1993) Esterases of xylan-degrading microorganisms, production, properties and significance. Enzyme Microb Technol 15:460–475CrossRefGoogle Scholar
  30. Christov LP, Szakacs G, Balakrishman H (1999) Production, partial characterization and use of fungal cellulase-free xylanases in pulp bleaching. Process Biochem 34:511–517Google Scholar
  31. Christov L, Biely P, Kalogeris E, Christakopoulos P, Prior BA, Bhat MK (2000) Effects of purified endo-β-1,4-xylanases of family 10 and 11 and acetyl xylan esterases on eucalypt sulfite dissolving pulp. J Biotechnol 83:231–244CrossRefGoogle Scholar
  32. Collins T, Gerday C, Feller G (2005) Xylanases, xylanases families and extremophilic xylanases. FEMS Microbiol Rev 29:3–23CrossRefGoogle Scholar
  33. Coughlan MP, Hazlewood GP (1993) β-1,4-D-Xylan-degrading enzyme systems, biochemistry, molecular biology and applications. Biotechnol Appl Biochem 17:259–289Google Scholar
  34. Crepin VF, Fauld CB, Connerton IF (2004) Functional classification of the microbial feruloyl esterases. Appl Microbiol Biotechnol 63(6):647–652CrossRefGoogle Scholar
  35. Csiszár E, Urbánszki K, Szakás G (2001) Biotreatment of desized cotton fabric by commercial cellulase and xylanase enzymes. J Mol Catal B Enzym 11:1065–1072CrossRefGoogle Scholar
  36. Dalboge H (1997) Expression cloning of fungal enzyme genes; a novel approach for efficient isolation of enzyme genes of industrial relevance. FEMS Microbiol Rev 21:29–42CrossRefGoogle Scholar
  37. Damaso MCT, Andrade CMMC, Pereira N Jr (2000) Use of corncob for endoxylanase production by thermophilic fungus Thermomyces lanuginosus IOC-4145. Appl Biochem Biotechnol 84–86:821–834CrossRefGoogle Scholar
  38. de Graaff LH, van den Broeck HC, Ooijen AJJ (1994) Regulation of the xylanase-encoding xlnA gene of Aspergillus tubigensis. Mol Microbiol 12:479–490Google Scholar
  39. de Vries RP, Kester HC, Poulsen CH, Benen JA, Visser J (2000) Synergy between enzymes from Aspergillus involved in the degradation of plant cell wall polysaccharides. Carbohydr Res 327(4)401–410CrossRefGoogle Scholar
  40. Debyser W, Derdelinckx G, Delcour JA (1997) Arabinoxylan solubilization and inhibition of the berley malt system by wheat during mashing with wheat whole meal adjunct, evidence for a new class of enzyme inhibitors in wheat. J Am Soc Brew Chem 55:153–157Google Scholar
  41. Degefu Y, Lohtander K, Paulin L (2004) Expression patterns and phylogenetic analysis of two xylanase genes (htxyl1 and htxyl2) from Helminthosporium turcicum, the cause of northern leaf blight of maize. Biochimie 86:83–90CrossRefGoogle Scholar
  42. Dervilly G, Leclercq C, Zimmerman D, Roue C, Thibault JF Sauliner L (2002) Isolation and characterization of high molecular mass water-soluble arabinoxylans from barley malt. Carbohydr Polym 47:143–149CrossRefGoogle Scholar
  43. Dhillon A, Gupta JK, Jauhari BM, Khanna S (2000) A cellulase-poor, thermostable, alkalitolerant xylanase produced by Bacillus circulans AB 16 grown on rice straw and its application in biobleaching of eucalyptus pulp. Bioresour Technol 73:273–277CrossRefGoogle Scholar
  44. Doi RH, Tamaru T (2001) The Clostridium cellulovorans cellulosome: an enzyme complex with plant cell wall degrading activity. Chem Rec 1(1):24–32Google Scholar
  45. Doi RH, Kosugi A (2004) Cellulosomes: plant-cell-wall-degrading enzyme complexes. Nat Rev Microbiol 2(7):541–551CrossRefGoogle Scholar
  46. Doi RH, Goldstein M, Hashida S, Park JS, Takagi M (1994) The Clostridium cellulovorans cellulosome. Crit Rev Microbiol 20:87–93Google Scholar
  47. Doi RH, Park JS, Liu CC, Malburg LM, Tamaru Y, Ichiishi A, Ibrahim A (1998) Cellulosome and noncellulosomal cellulases of Clostridium cellulovorans. Extremophiles 2(2):53–60CrossRefGoogle Scholar
  48. Doi RH, Kosugi A, Murashima K, Tamaru Y, Han SO (2003) Cellulosomes from mesophilic bacteria. J Bacteriol 185:5907–5914CrossRefGoogle Scholar
  49. Dowzer CE, Kelly JM (1991) Analysis of the creA gene, a regulator of carbon catabolite repression in Aspergillus niger Mol Cell Biol 7:1256–1266Google Scholar
  50. Duarte MCT, Silva EC, Gomes IMB, Ponezi AN, Portugal EP, Vicente JR, Davanzo E (2003) Xylan-hydrolysing enzyme system from Bacillus pumilus CBMAI 0008 and its effects on Eucalyptus grandis kraft pulp for bleaching improvement. Bioresour Technol 88:9–15CrossRefGoogle Scholar
  51. Ebringerova A, Heinze T (2000) Xylan and xulan derivatives—biopolymers with valuable properties. 1. Naturally occurring xylans structures, isolation procedures and properties. Macromol Rapid Commun 21:542–556CrossRefGoogle Scholar
  52. Fernández-Espinar M, Piñaga F, de Graaff L, Visser J, Ramón D, Vallés S (1994) Purification, characterization and regulation of the synthesis of an Aspergillus nidulans acidic xylanase. Appl Microbiol Biotechnol 42:555–562CrossRefGoogle Scholar
  53. Ferreira-Filho, EX (1994) The xylan-degrading enzyme system. Braz J Med Biol Res 27:1093–1109Google Scholar
  54. Flores ME, Perea M, Rodríguez O, Malváez A, Huitron C (1996) Physiological studies on induction and catabolic repression of β-xylosidase and endoxylanase in Streptomyces sp. CH-M-1035. J Biotechnol 49:179–187CrossRefGoogle Scholar
  55. Fujimoto H, Ooi T, Wang S-L, Takizawa T, Hidaka H, Murao S, Arai M (1995) Purification and properties of three xylanases from Aspergillus aculeatus. Biosci Biotechnol Biochem 59:538–540Google Scholar
  56. Ganga MA, Piñaga F, Vallés S, Ramón D, Querol A (1999) Aroma improving in microvinification processes by the use of a recombinant wine yeast strain expressing the Aspergillus nidulans xlnA gene. Int J Food Microbiol 47:171–178CrossRefGoogle Scholar
  57. Garg AP, McCarthy AJ, Roberts JC (1996) Biobleaching effect of Streptomyces thermoviolaceus xylanase preparations on birchwood kraft pulp. Enzyme Microb Technol 18:261–267CrossRefGoogle Scholar
  58. Georis J, Giannotta F, de Buyl E, Granier B, Frère J-M (2000) Purification and properties of three endo-β-1,4-xylanases produced by Streptomyces sp. strain S38 which differ in their ability to enhance the bleaching of kraft pulp. Enzyme Microb Technol 26:178–186CrossRefGoogle Scholar
  59. Ghanen NB, Yusef HH, Mahrouse HK (2000) Production of Aspergillus terreus xylanase in solid-state cultures: application of the Plackett–Burman experimental design to evaluate nutritional requirements. Bioresour Technol 73:113–121CrossRefGoogle Scholar
  60. Ghareib M, El Dein MMN (1992) Purification and general properties of xylanase from Aspergillus terreus. Zentralbl Mikrobiol 147:569–576Google Scholar
  61. Ghosh M, Nanda G (1994) Physiological studies on xylose induction and glucose repression of xylanolytic enzymes in Aspergillus sydowii MG49. FEBS Microbiol Lett 117:151–156CrossRefGoogle Scholar
  62. Gomes DJ, Gomes J, Steiner W (1994) Factors influencing the induction of endo-xylanase by Thermoascus aurantiacus. J Biotechnol 33:87–94CrossRefGoogle Scholar
  63. Haarhoff J, Moes CJ, Cerff C, van Wyk WJ, Gerischer G, Janse BJH (1999) Characterization and biobleaching effect of hemicellulases produced by thermophilic fungi. Biotechnol Lett 21:415–420Google Scholar
  64. Hakulinen N, Turunen O, Janis J, Leisola M, Rouvinen J (2003) Three-dimensional structures of thermophilic beta-1,4-xylanases from Chaetomium thermophilum and Nonomuraea flexuosa. Comparison of twelve xylanases in relation to their thermal stability. Eur J Biochem 270:1399–1412PubMedGoogle Scholar
  65. Haltrich D, Nidetzky B, Kulbe KD, Steiner W, Zupancic S (1996) Production of fungal xylanases. Bioresour Technol 58:137–161CrossRefGoogle Scholar
  66. Harbak L, Thygesen HV (2002) Safety evaluation of a xylanase expressed in Bacillus subtilis. Food Chem Toxicol 40:1–8CrossRefGoogle Scholar
  67. Harris GW, Pickersgill RW, Connerton I, Debeire P, Touzel J-P, Breton C, Pérez S (1997) Structural basis of the properties of an industrially relevant thermophilic xylanase. Proteins 29:77–86Google Scholar
  68. Henrissat B, Bairoch A (1993) New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 293:781–788PubMedGoogle Scholar
  69. Horikoshi K (1996) Alkaliphiles—from an industrial point of view. FEMS Microbiol Rev 18:259–270CrossRefGoogle Scholar
  70. Hrmová M, Petraková E, Biely P (1991) Induction of cellulose- and xylan-degrading enzyme system in Aspergillus terreus by homo- and heterodisaccharides composed of glucose and xylose. J Gen Microbiol 137:541–547Google Scholar
  71. Iefuji H, Chino M, Kato M, Iimura Y (1996) Acid xylanase from yeast Cryptococcus sp. S-2: purification, characterization, cloning, and sequencing. Biosci Biotechnol Biochem 60:1331–1338Google Scholar
  72. Ishihara M, Tawata S, Toyama S (1997) Purification and some properties of a thermostable xylanase from thermophilic fungus strain HG-1. J Ferment Bioeng 835:478–480CrossRefGoogle Scholar
  73. Ito K, Iwashita K, Iwano K (1992) Cloning and sequencing of the xyn C gene encoding acid xylanase of Aspergillus kawachii. Biosci Biotechnol Biochem 56:1338–1340Google Scholar
  74. Izydorczyk MS, Biliaderis CG (1995) Cereal arabinoxylans: advances in structure and physiochemical properties. Carbohydr Polym 28:33–48CrossRefGoogle Scholar
  75. Jørgensen H, Eriksson T, Börjesson J, Tjerneld F, Olsson L (2003) Purification and characterization of five cellulases and one xylanase from Penicillium brasilianum IBT 20888. Enzyme Microb Technol 32:851–861Google Scholar
  76. Jun HS, Ha JK, Malburg LM, Verrinder GA, Forsberg CW (2003) Characteristics of a cluster of xylanase genes in Fibrobacter succinogenes S85. Can J Microbiol 49(3):171–180CrossRefGoogle Scholar
  77. Kadowaki MK, Pacheco MAC, Peralta RM (1995) Xylanase production by Aspergillus isolates grown on corn cob. Rev Microbiol 263:219–223Google Scholar
  78. Kalogeris E, Christakopoulos P, Kekos D, Macris BJ (1998) Studies on solid-state production of thermostable endoxylanases from Thermoascus aurantiacus. Characterization of two isozymes. J Biotechnol 60:155–163CrossRefGoogle Scholar
  79. Kaneko S, Shimasaki T, Kusakable I (1993) Purification and some properties of intracellular α-L-arabinofuranosidase from Aspergillus niger 5–16. Biosci Biotechnol Biochem 57:1161–1165Google Scholar
  80. Kansoh AL, Nagieb ZA (2004) Xylanase and mannanase enzymes from Streptomyces galbus NR and their use in biobleaching of softwood kraft pulp. Antonie van Leeuwenhoek J Microbiol Serol 85:103–114CrossRefGoogle Scholar
  81. Khanna P, Sundari SS, Kumar NJ (1995) Production, isolation and partial purification of xylanase from an Aspergillus sp. World J Microbiol Biotechnol 11:242–243CrossRefGoogle Scholar
  82. Kimura I, Sasahara H, Tajima S (1995) Purification and characterization of two xylanases and an arabinofuranosidase from Aspergillus sojae. J Ferment Bioeng 804:334–339CrossRefGoogle Scholar
  83. Kimura T, Ito J, Kawano A, Makino T, Kondo H, Karita S, Sakka K, Ohmiya K (2000) Purification, characterization, and molecular cloning of acidophilic xylanase from Penicillium sp. 40. Biosci Biotechnol Biochem 64:1230–1237Google Scholar
  84. Kitamoto N, Yoshino S, Ohmiya K, Tsukagoshi N (1999) Purification and characterization of the overexpressed Aspergillus oryzae xylanase, XynF1. Biosci Biotechnol Biochem 6310:1791–1794Google Scholar
  85. Kormelink FJM, Leeuwen MGFSL, Wood TM, Voragen AGJ (1993) Purification and characterization of three endo (1,4)-β-D-xylanases and one β-xylosidase from Aspergillus awamori. J Biotechnol 27:249–253CrossRefGoogle Scholar
  86. Kulkarni N, Rao M (1996) Application of xylanase from alkaliphilic thermophilic Bacillus sp. NCIM 59 in biobleaching of bagasse pulp. J Biotechnol 51:167–173CrossRefGoogle Scholar
  87. Kulkarni N, Lakshmikumaran M, Rao M (1999a) Xylanase II from a alkaliphilic thermophilic Bacillus with distinctly different structure from other xylanases, evolutionary relationship to alkaliphilic xylanases. Biochem Biophys Res Commun 263:640–645CrossRefGoogle Scholar
  88. Kulkarni N, Shendye A, Rao M (1999b) Molecular and biotechnological aspects of xylanases. FEMS Microbiol Rev 23:411–456CrossRefPubMedGoogle Scholar
  89. Kurakabe M, Shinjii O, Komaki T (1997) Transxylosilation of β-xylosidase from Aspergillus awamori K4. Biosci Biotechnol Biochem 6112:2010–2014Google Scholar
  90. Lasa I, Berenguer J (1993) Thermophilic enzymes and their biotechnological potential. Microbiology 9:77–89Google Scholar
  91. Lenartovicz V, Souza CGM, Moreira FG, Peralta RM (2002) Temperature effect in the production of multiple xylanases by Aspergillus fumigatus. J Basic Microbiol 42:388–395CrossRefGoogle Scholar
  92. Li XL, Zhang Z, Dean IFD, Eriksson KL, Ljungdahl LG (1993) Purification and characterization of a new xylanase APX-II from the fungus Aureobasidium pullulans Y-2311-1. Appl Environ Microbiol 59:3212–3218Google Scholar
  93. Li K, Azadi P, Collins R, Tolan J, Kim JS, Eriksson Karl-Erik L (2000) Relationships between activities of xylanases and xylan structures. Enzyme Microb Technol 27:89–94CrossRefGoogle Scholar
  94. Liu W, Lu Y, Ma G (1999) Induction and glucose repression of endo-β-xylanase in the yeast Trichosporon cutaneum SL409. Process Biochem 34:67–72Google Scholar
  95. Maat J, Roza M, Verbakel J, Stam H, Santos da Silva MJ, Bosse M, Egmond MR, Hagemans MLD, van Gorcom RFM, Hessing JGM, van den Hondel CAMJJ, van Rotterdam C (1992) Xylanases and their applications in bakery. In: Visser J, Beldman G, Someren Kusters-van MA, Voragem AGJ (eds) Xylans and xylanases. Elsevier, Amsterdam, pp 349–360Google Scholar
  96. Mach RL, Strauss J, Zeilinger S, Schindler M, Kubicek CP (1996) Carbon catabolite repression of xylanase I xyn1 gene expression in Trichoderma reesei. Mol Microbiol 216:1273–1281CrossRefGoogle Scholar
  97. Maheshwari R, Bharadwaj G, Bhat MK (2000) Thermophilic fungi: their physiology and enzymes. Microbiol Mol Biol Rev 64:461–488CrossRefGoogle Scholar
  98. Medeiros RG, Soffner MAP, Tomé JA, Cacais AOG, Estelles RS, Salles BC, Ferreira HM, Neto SAL, Silva FG Jr, Filho EXF (2000) The production of hemicellulases by aerobic fungi on medium containing residues of banana plant as substrate. Biotechnol Prog 16:522–524CrossRefGoogle Scholar
  99. Monti R, Terenzi HF, Jorge JA (1991) Purification and properties of an extracellular xylanase from thermophilic fungus Humicola grisea var. thermoidea. Can J Microbiol 37:675–681Google Scholar
  100. Monti R, Cardello L, Custódio MF, Goulart AJ, Sayama AH, Contiero J (2003) Production and purification of an endo-1,4-β-xylanase from Humicola grisea var. thermoidea by electroelution. Braz J Microbiol 34:124–128Google Scholar
  101. Morosoli R, Durand S, Letendre E (1987) Induction of xylanase by β-methylxyloside in Cryptococcus albidus. FEMS Microbiol Lett 48:261–266CrossRefGoogle Scholar
  102. Murzin AG, Brenner SE, Hubbard T, Chothia C (1995) SCOP: a structural classification of proteins database for the investigation of sequences and structures. J Mol Biol 247(4):536–540CrossRefGoogle Scholar
  103. Niehaus F, Bertoldo C, Kähler M, Antranikian G (1999) Extremophiles as a source of novel enzymes for industrial application. Appl Microbiol Biotechnol 51:711–729CrossRefPubMedGoogle Scholar
  104. Nuyens F, van Zyl HW, Iserentant D, Verachtert H, Michiels C (2001) Heterologous expression of the Bacillus pumilus endo-β-xylanase (xynA) gene in the yeast Saccharomyces cerevisiae. Appl Microbiol Biotechnol 56:431–434CrossRefPubMedGoogle Scholar
  105. Oksanen T, Pere J, Paavilainen L, Buchert J, Viikari L (2000) Treatment of recycled kraft pulps with Trichoderma reesei hemicellulases and cellulases. J Biotechnol 78:39–48CrossRefGoogle Scholar
  106. Paice MG, Gurnagul N, Page DH, Jurasek L (1992) Mechanism of hemicellulose-directed prebleaching of kraft pulps. Enzyme Microb Technol 14:272–276CrossRefGoogle Scholar
  107. Pandey A, Soccol CR, Nigam P, Soccol VT (2000) Biotechnological potential of agro-industrial residues. I, sugarcane bagasse. Bioresour Technol 74:69–80CrossRefGoogle Scholar
  108. Parajó JC, Domíngues H, Domíngues JM (1998) Biotechnological production of xylitol. Part 1, interest of xylitol and fundamentals of its biosynthesis. Bioresour Technol 65:191–201Google Scholar
  109. Patel RN, Grabski AC, Jefries TW (1993) Chromophore release from kraft by purified Srepmomices roseiscleroticus xylanase. Appl Microbiol Biotechnol 39:405–412CrossRefGoogle Scholar
  110. Piñaga F, Fernández-Espinar MT, Vallés S, Ramon D (1994) Xylanase production in Aspergillus nidulans, induction and carbon catabolite repression. FEMS Microbiol Lett 115:319–324CrossRefGoogle Scholar
  111. Prade RA (1995) Xylanases, from biology to biotechnology. Biotechnol Genet Eng Rev 13:101–131Google Scholar
  112. Puchart V, Katapodis P, Biely P, Kremnický L, Christakopoulos P, Vršanská M, Kekos D, Macris BJ, Bhat MK (1999) Production of xylanases, mannanases and pectinases by the thermophilic fungus Thermomyces lanuginosus. Enzyme Microb Technol 24:355–361CrossRefGoogle Scholar
  113. Puls J, Poutanen K (1989) Mechanisms of enzymatic hydrolysis of hemicelluloses xylans and procedures for determination of the enzyme activities involved. In: Ericksson KEE, Ander P (eds) Proceedings of the 3rd International Conference on Biotechnology in the Pulp and Paper Industry. STFI, Stockholm, pp 93–95Google Scholar
  114. Puls J, Schuseil J (1993) Chemistry of hemicelluloses, relationship between hemicellulose structure and enzyme required for hydrolysis. In: Cougland MP, Hazlewood GP (eds) Hemicelluloses and hemicellulases. Portland Press, London, pp 1–27Google Scholar
  115. Raj KC, Chandra TS (1996) Purification and characterization of xylanase from alkali-tolerant Aspergillus fischeri Fxn1. FEMS Microbiol Lett 1453:457–461CrossRefGoogle Scholar
  116. Rani DS, Nand K (2000) Production of thermostable cellulase-free xylanase by Clostridium absonum CFR-702. Process Biochem 36:355–362CrossRefGoogle Scholar
  117. Reilly PJ (1981) Xylanases, structure and function. In: Hollaender A (ed) Trends in the biology of fermentation for fuels and chemicals. Plenum, New York, pp 111–129Google Scholar
  118. Rizzatti ACS, Jorge JA, Terenzi HF, Rechia CGV, Polizeli MLTM (2001) Purification and properties of a thermostable extracellular β-xylosidase produced by a thermotolerant Aspergillus phoenicis. J Ind Microbiol Biotech 26:156–160CrossRefGoogle Scholar
  119. Rizzatti ACS, Sandrim VC, Jorge JA, Terenzi HF, Polizeli MLTM (2004) Influence of temperature on the properties of xylanolytic enzymes of the thermotolerant fungus Aspergillus phoenicis. J Ind Microbiol Biotech 31:88–93CrossRefGoogle Scholar
  120. Ryan SE, Nolan K, Thompson R, Gubitz GM, Savage AV, Tuohy MG (2003) Purification and characterization of a new low molecular weight endoxylanase from Penicillium capsularium. Enzyme Microb Technol 33:775–785CrossRefGoogle Scholar
  121. Salles BC, Cunha RB, Fontes W, Sousa MV, Filho EXF (2000) Purification and characterization of a new xylanase from Acrophialophora nainiana. J Biotechnol 81:199–204CrossRefGoogle Scholar
  122. Salles BC, Medeiros RG, Báo SM, Silva FG Jr, Filho EXF (2004) Effect of cellulase-free xylanases from Acrophialophora nainiana and Humicola grisea var. thermoidea on eucalyptus kraft pulp. Process Biochem (in press)Google Scholar
  123. Sandrim VC, Rizzatti ACS, Terenzi HF, Jorge JA, Milagres AMF, Polizeli MLTM (2004) Purification and biochemical characterization of two xylanases produced by Aspergillus caespitosus and their potential for kraft pulp bleaching. Process Biochem (in press)Google Scholar
  124. Sapag A, Wouters J, Lambert C, de Ioannes P, Eyzaguirre J, Depiereux E (2002) The endoxylanases from family 11: computer analysis of protein sequences reveals important structural and phylogenetic relationships. J Biotechnol 95:109–131CrossRefGoogle Scholar
  125. Sato Y, Niimura Y, Yura K, Go M (1999) Module–intron correlation and intron sliding in family F/10 xylanase genes. Gene 238:93–101CrossRefGoogle Scholar
  126. Screenath HK, Jeffries TW (2000) Production of ethanol from wood hydrolysate by yeasts. Bioresour Technol 72:253–260CrossRefGoogle Scholar
  127. Segura BG, Durand R, Fèvre M (1998) Multiplicity and expression of xylanases in the rumen fungus Neocallimastix frontalis. FEMS Microbiol Lett 164(1):47–53CrossRefGoogle Scholar
  128. Shah AK, Sidid SS, Ahmad A, Rele MV (1999) Treatment of bagasse pulp with cellulase-free xylanase from an alkalophilic Bacillus sp. Sam-3. Bioresour Technol 68:133–140CrossRefGoogle Scholar
  129. Shao W, Wiegel J (1992) Purification and characterization of thermostable β-xylosidase from Thermoanaerobacter ethanolicus. J Bacteriol 17418:5848–5853Google Scholar
  130. Shapack GE, Russel I, Stewart GG (1987) Thermophilic microbes in ethanol production. CRCGoogle Scholar
  131. Silva CHC, Puls J, Sousa MV, Ferreira-Filho EX (1999) Purification and characterization of a low molecular weight xylanase from solid-state cultures of Aspergillus fumigatus Fresenius. Rev Microbiol 30:114–119Google Scholar
  132. Simão RCG, Souza CGM, Peralta RM (1997a) The use of methyl β-D-xyloside as a substrate for xylanase production by Aspergillus tamarii. Can J Microbiol 43:56–60Google Scholar
  133. Simão RCG, Souza CGM, Peralta RM (1997b) Induction of xylanase in Aspergillus tamarii by methyl β-D-xyloside. Appl Microbiol Biotechnol 47:267–271CrossRefGoogle Scholar
  134. Singh S, Reddy P, Haarhoff J, Biely P, Janse B, Pillay B, Pillay D, Prior BA (2000) Relatedness of Thermomyces lanuginosus strains producing a thermostable xylanase. J Biotechnol 81:119–128CrossRefGoogle Scholar
  135. Smith DC, Bhat KM, Wood TM (1991) Xylan-hydrolysing enzymes from thermophilic and mesophilic fungi. World J Microbiol Biotechnol 7:475–484CrossRefGoogle Scholar
  136. Subramaniyan S, Prema P (2000) Cellulase-free xylanases from Bacillus and other microorganisms. FEMS Microbiol Lett 183:1–7CrossRefGoogle Scholar
  137. Subramaniyan S, Prema P (2002) Biotechnology of microbial xylanases, enzymology, molecular biology, and application. Crit Rev Biotechnol 22:33–64CrossRefGoogle Scholar
  138. Sung WL, Luk CK, Chan B, Wakarchuk W, Yaguchi M, Campbell R, Willick G, Ishikawa K, Zahab DM (1995) Expression of Trichoderma reesei and Trichoderma viride xylanases in Escherichia coli. Biochem Cell Biol 73(5–6):253–259Google Scholar
  139. Sunna A, Antranikian G (1997) Xylanolytic enzymes from fungi and bacteria. Crit Rev Biotechnol 17(1):39–67Google Scholar
  140. Tan LUL, Wong KKY, Yu EKC, Saddler JN (1985) Purification and characterization of two D-xylanases from Trichoderma harzianum. Enzyme Microb Technol 7:425–430CrossRefGoogle Scholar
  141. Taneja K, Gupta S, Kuhad RC (2002) Properties and application of a partially purified alkaline xylanase from an alkalophilic fungus Aspergillus nidulans KK-99. Bioresour Technol 85(1):39–42CrossRefGoogle Scholar
  142. Techapun C, Poosaran N, Watanabe M, Sasaki K (2003) Thermostable and alkaline-tolerant microbial cellulose-free xylanases produced from agricultural wastes and the properties required for use in pulp bleaching bioprocesses: a review. Process Biochem 38:1327–1340CrossRefGoogle Scholar
  143. Tenkanen M, Siika-aho M (2000) An alpha-glucuronidase of Schizophyllum commune acting on polymeric xylan. J Biotechnol 78(2):149–161CrossRefGoogle Scholar
  144. Tenkanen M, Viikari L, Buchert J (1997) Use of acid-tolerant xylanase for bleaching of kraft pulps. Biotechnol Tech 1112:935–938CrossRefGoogle Scholar
  145. Törrönen A, Rouvinen J (1997) Structural and functional properties of low molecular weight endo-1,4-β-xylanases. J Biotechnol 57:137–149CrossRefPubMedGoogle Scholar
  146. Turunen O, Etuaho K, Fenel F, Vehmaanperä J, Wu X, Rouvinen J, Leisola M (2001) A combination of weakly stabilizing mutations whit a disulfide bridge in the α-helix region of Trichoderma reesei endo-1,4-β-xylanase II increases the thermal stability through synergism. J Biotechnol 88:37–46CrossRefPubMedGoogle Scholar
  147. Twomey LN, Pluske JR, Rowe JB, Choct M, Brown W, McConnell MF, Pethick DW (2003) The effects of increasing levels of soluble non-starch polysaccharides and inclusion of feed enzymes in dog diets on faecal quality and digestibility. Anim Feed Sci Technol 108(1–4):71–82CrossRefGoogle Scholar
  148. Uffen RL (1997) Xylan degradation: a glimpse at microbial diversity. J Ind Microbiol Biotechnol 19:1–6CrossRefGoogle Scholar
  149. van Peij NNME, Brinkmann J, Vrsanská M, Visser J, de Graaff LH (1997) β-xylosidase activity, encoded by xlnD, is essential for complete hydrolysis of xylan by Aspergillus niger but not for induction of the xylanolytic enzyme spectrum. Eur J Biochem 245:164–173CrossRefGoogle Scholar
  150. Vardakou M, Katapodis P, Samiotaki M, Kekos D, Panayotou G, Christakopoulos P (2003) Mode of action of family 10 and 11 endoxylanases on water-unextractable arabinoxylan. Int J Biol Macromol 33(1–3):129–134CrossRefGoogle Scholar
  151. Viikari L, Sundquist J, Kettunen J (1991) Xylanase enzymes promote pulp bleaching. Paper Timber 73:384–389Google Scholar
  152. Viikari L, Kantelinen A, Sundquist J, Linko M (1994) Xylanases in bleaching, from an idea to the industry. FEMS Microbiol Rev 13:335–350CrossRefGoogle Scholar
  153. Whistler RL, Richards EL (1970) Hemicelluloses. In: Pigman W, Horton D (eds) The carbohydrates. Academic Press, New York, pp 447–469Google Scholar
  154. Whitmire D, Miti B (2002) Xylanase effects on pulp delignification. Chem Eng Commun 189(5):608–622CrossRefGoogle Scholar
  155. Williamson G, Faulds CB, Kroon PA (1998) Specificity of ferulic acid (feruloyl) esterases. Biochem Soc Trans 26(2):205–209Google Scholar
  156. Wong KKY, Saddler JN (1993) Applications of hemicellulases in the food, feed, and pulp and paper industries. In: Coughlan MP, Hazlewood GP (eds) Hemicelluloses and hemicellulases. Portland Press, London, pp 127–143Google Scholar
  157. Wong KKY, Tan LUL, Saddler JN (1988) Multiplicity of β-1,4-xylanase in microorganisms, functions and applications. Microbiol Rev 52(3):305–317PubMedGoogle Scholar
  158. Zanoelo FF, Polizeli MLTM, Terenzi HF, Jorge JA (2004) Purification and biochemical properties of a thermostable xylose-tolerant β-D-xylosidase from Scytalidium thermophilum. J Ind Microbiol Biotech 31:170–176CrossRefGoogle Scholar
  159. Zhao J, Li X, Qu Y, Gao P (2002) Xylanase pretreatment leads to enhanced soda pulping of wheat straw. Enzyme Microb Technol 30:734–740CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • M. L. T. M. Polizeli
    • 1
    Email author
  • A. C. S. Rizzatti
    • 1
  • R. Monti
    • 2
  • H. F. Terenzi
    • 1
  • J. A. Jorge
    • 1
  • D. S. Amorim
    • 1
  1. 1.Departamento de Biologia, Faculdade de FilosofiaCiências e Letras de Ribeirão Preto-Universidade de São PauloRibeirão PretoBrazil
  2. 2.Departamento de Alimentos e NutriçãoFaculdade de Ciências Farmacêuticas da Universidade Estadual Paulista Júlio de Mesquita FilhoAraraquaraBrazil

Personalised recommendations