Applied Microbiology and Biotechnology

, Volume 71, Issue 5, pp 680–698 | Cite as

Sequencing of the intergenic 16S-23S rRNA spacer (ITS) region of Mollicutes species and their identification using microarray-based assay and DNA sequencing

  • Dmitriy   V.   Volokhov
  • Joseph   George
  • Sue   X.   Liu
  • Pranvera   Ikonomi
  • Christine   Anderson
  • Vladimir   Chizhikov
Applied Genetics and Molecular Biotechnology

Abstract

We have completed sequencing the 16S-23S rRNA intergenic transcribed spacer (ITS) region of most known Mycoplasma , Acholeplasma , Ureaplasma , Mesoplasma , and Spiroplasma species. Analysis of the sequence data revealed a significant interspecies variability and low intraspecies polymorphism of the ITS region among Mollicutes . This finding enabled the application of a combined polymerase chain reaction–microarray technology for identifying Mollicutes species. The microarray included individual species-specific oligonucleotide probes for characterizing human Mollicutes species and other species known to be common cell line contaminants. Evaluation of the microarray was conducted using multiple, previously characterized, Mollicutes species. The microarray analysis of the samples used demonstrated a highly specific assay, which is capable of rapid and accurate discrimination among Mollicutes species.

Notes

Acknowledgements

We would like to express our appreciation to Dr. Maureen K. Davidson of the Mollicutes Collection at Purdue University, West Lafayette, IN, USA, for kindly providing us with Mollicutes species; Dr. J. Lindsay Oaks of the Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA for kindly providing us with genomic DNA of Mycoplasma vulturii strain Gb-V33; and Dr. Michael Klutch for his assistance in sequencing.

References

  1. Cobo F, Stacey GN, Hunt C, Cabrera C, Nieto A, Montes R et al (2005) Microbiological control in stem cell banks: approaches to standardisation. Appl Microbiol Biotechnol 68:456-466 PubMedCrossRefGoogle Scholar
  2. Fraser CM, Gocayne JD, White O, Adams MD, Clayton RA, Fleischmann RD et al (1995) The minimal gene complement of Mycoplasma genitalium . Science 270:397–403 PubMedCrossRefGoogle Scholar
  3. Gray LD, Ketring KL, Tang YW (2005) Clinical use of 16S rRNA gene sequencing to identify Mycoplasma felis and M. gateae associated with feline ulcerative keratitis. J Clin Microbiol 43:3431–3434 PubMedCrossRefGoogle Scholar
  4. Harasawa R, Mizusawa H, Takeuchi M (1995) Simple detection of the contamination in animal cell cultures. Tanpakushitsu Kakusan Koso 40:2361–2368 PubMedGoogle Scholar
  5. Harasawa R, Pitcher DG, Ramirez AS, Bradbury JM (2004) A putative transposase gene in the 16S-23S rRNA intergenic spacer region of Mycoplasma imitans . Microbiology 150:1023–1029 PubMedCrossRefGoogle Scholar
  6. Ivshina AV, Vodeiko GM, Kuznetsov VA, Volokhov D, Taffs R, Chizhikov VI et al (2004) Mapping of genomic segments of influenza B virus strains by an oligonucleotide microarray method. J Clin Microbiol 42:5793–5801 PubMedCrossRefGoogle Scholar
  7. Jules Mattes, M (2004) Control of the mycoplasma epidemic. In Vitro Cell Dev Biol Anim 40:253–254 PubMedCrossRefGoogle Scholar
  8. Kamla V, Henrich B, Hadding U (1996) Phylogeny based on elongation factor Tu reflects the phenotypic features of mycoplasmas better than that based on 16S rRNA. Gene 171:83–87 PubMedCrossRefGoogle Scholar
  9. Kim KS, Ko KS, Chang MW, Hahn TW, Hong SK, Kook YH (2003) Use of rpoB sequences for phylogenetic study of Mycoplasma species. FEMS Microbiol Lett 226:299–305 PubMedCrossRefGoogle Scholar
  10. Konigsson MH, Bolske G, Johansson KE (2002) Intraspecific variation in the 16S rRNA gene sequences of Mycoplasma agalactiae and Mycoplasma bovis strains. Vet Microbiol 85:209–220 PubMedCrossRefGoogle Scholar
  11. Langdon SP (2004) Cell culture contamination: an overview. Methods Mol Med 88:309–317 PubMedGoogle Scholar
  12. McAuliffe L, Ellis RJ, Lawes JR, Ayling RD, Nicholas RA (2005) 16S rDNA PCR and denaturing gradient gel electrophoresis; a single generic test for detecting and differentiating Mycoplasma species. J Med Microbiol 54:731–739 PubMedCrossRefGoogle Scholar
  13. Nakagawa T, Uemori T, Asada K, Kato I, Harasawa R (1992) Acholeplasma laidlawii has tRNA genes in the 16S-23S spacer of the rRNA operon. J Bacteriol 174:8163–8165 PubMedGoogle Scholar
  14. Neimark H, Johansson KE, Rikihisa Y, Tully JG (2001) Proposal to transfer some members of the genera Haemobartonella and Eperythrozoon to the genus Mycoplasma with descriptions of ‘ Candidatus Mycoplasma haemofelis ’, ‘ Candidatus Mycoplasma haemomuris ’, ‘ Candidatus Mycoplasma haemosuis ’ and ‘ Candidatus Mycoplasma wenyonii ’. Int J Syst Evol Microbiol 51:891–899 PubMedGoogle Scholar
  15. Neimark H, Johansson KE, Rikihisa Y, Tully JG (2002) Revision of haemotrophic Mycoplasma species names. Int J Syst Evol Microbiol 52:683 PubMedGoogle Scholar
  16. Nicolas MM, Stalis IH, Clippinger TL, Busch M, Nordhausen R, Maalouf G, Schrenzel MD (2005) Systemic disease in Vaal rhebok ( Pelea capreolus ) caused by mycoplasmas in the mycoides cluster. J Clin Microbiol 43:1330–1340 PubMedCrossRefGoogle Scholar
  17. Pettersson B, Bolske G, Thiaucourt F, Uhlen M, Johansson KE (1998) Molecular evolution of Mycoplasma capricolum subsp. capripneumoniae strains, based on polymorphisms in the 16S rRNA genes. J Bacteriol 180:2350–2358 PubMedGoogle Scholar
  18. Pettersson B, Tully JG, Bolske G, Johansson KE (2000) Updated phylogenetic description of the Mycoplasma hominis cluster (Weisburg et al. 1989) based on 16S rDNA sequences. Int J Syst Evol Microbiol 50 (Pt 1):291–301 PubMedGoogle Scholar
  19. Razin S (1994) DNA probes and PCR in diagnosis of mycoplasma infections. Mol Cell Probes 8:497–511 PubMedCrossRefGoogle Scholar
  20. Razin S (1997) Comparative genomics of mycoplasmas. Wien Klin Wochenschr 109:551–556 PubMedGoogle Scholar
  21. Razin S, Yogev D, Naot Y (1998) Molecular biology and pathogenicity of mycoplasmas. Microbiol Mol Biol Rev 62:1094–1156 PubMedGoogle Scholar
  22. Stakenborg T, Vicca J, Butaye P, Maes D, De Baere T, Verhelst R et al (2005) Evaluation of amplified rDNA restriction analysis (ARDRA) for the identification of Mycoplasma species. BMC Infect Dis 5:46 PubMedCrossRefGoogle Scholar
  23. Trachtenberg S (1998) Mollicutes-wall-less bacteria with internal cytoskeletons. J Struct Biol 124:244–256 PubMedCrossRefGoogle Scholar
  24. Uphoff CC, Drexler HG (2004) Detection of Mycoplasma contaminations. Methods Mol Biol 290:13–24 Google Scholar
  25. Volokhov D, Rasooly A, Chumakov K, Chizhikov V (2002) Identification of Listeria species by microarray-based assay. J Clin Microbiol 40:4720–4728 PubMedCrossRefGoogle Scholar
  26. Volokhov D, Chizhikov V, Chumakov K, Rasooly A (2003a) Microarray analysis of erythromycin resistance determinants. J Appl Microbiol 95:787–798 PubMedCrossRefGoogle Scholar
  27. Volokhov D, Chizhikov V, Chumakov K, Rasooly A (2003b) Microarray-based identification of thermophilic Campylobacter jejuni , C. coli , C. lari , and C. upsaliensis . J Clin Microbiol 41:4071–4080 PubMedCrossRefGoogle Scholar
  28. Volokhov D, Pomerantsev A, Kivovich V, Rasooly A, Chizhikov V (2004) Identification of Bacillus anthracis by multiprobe microarray hybridization. Diagn Microbiol Infect Dis 49:163–171 PubMedCrossRefGoogle Scholar
  29. Wang H, Kong F, Jelfs P, James G, Gilbert GL (2004) Simultaneous detection and identification of common cell culture contaminant and pathogenic mollicutes strains by reverse line blot hybridization. Appl Environ Microbiol 70:1483–1486 PubMedCrossRefGoogle Scholar
  30. Wolf M, Muller T, Dandekar T, Pollack JD (2004) Phylogeny of Firmicutes with special reference to Mycoplasma ( Mollicutes ) as inferred from phosphoglycerate kinase amino acid sequence data. Int J Syst Evol Microbiol 54:871–875 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Dmitriy   V.   Volokhov
    • 1
  • Joseph   George
    • 1
  • Sue   X.   Liu
    • 1
  • Pranvera   Ikonomi
    • 2
  • Christine   Anderson
    • 1
  • Vladimir   Chizhikov
    • 1
  1. 1. Center of Biologics Evaluation and Research, Office of Vaccines Research and Review, Division of Viral Products, Laboratory of Methods Development US Food and Drug Administration Rockville USA
  2. 2. American Type Culture Collection (ATCC) Manassas USA

Personalised recommendations