Applied Microbiology and Biotechnology

, Volume 70, Issue 2, pp 151–161 | Cite as

Integrating metabolomics into a systems biology framework to exploit metabolic complexity: strategies and applications in microorganisms

  • Qing-zhao Wang
  • Chan-yuan Wu
  • Tao Chen
  • Xun Chen
  • Xue-ming ZhaoEmail author


As an important functional genomic tool, metabolomics has been illustrated in detail in recent years, especially in plant science. However, the microbial category also has the potential to benefit from integration of metabolomics into system frameworks. In this article, we first examine the concepts and brief history of metabolomics. Next, we summarize metabolomic research processes and analytical platforms in strain improvements. The application cases of metabolomics in microorganisms answer what the metabolomics can do in strain improvements. The position of metabolomics in this systems biology framework and the real cases of integrating metabolomics into a system framework to explore the microbial metabolic complexity are also illustrated in this paper.


Metabolite Profile Partial Little Square Discriminant Analysis Intracellular Metabolite Strain Improvement Discriminant Function Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to thank National Nature Science Foundation of China (no.20536040) and State Key Development Program for Basic Research of China (no.2003CB716003) for financial support.


  1. Allen J, Davey HM, Broadhurst D, Heald JK, Rowland JJ, Oliver SG, Kell DB (2003) High-throughput characterisation of yeast mutants for functional genomics using metabolic footprinting. Nat Biotechnol 2:692CrossRefGoogle Scholar
  2. Askenazi M, Driggers EM, Holtzman DA, Norman TC, Iverson S, Zimmer DP, Boers ME, Blomquist PR, Martinez EJ, Monreal AW, Feibelman TP, Mayorga ME, Maxon ME, Sykes K, Tobin JV, Cordero E, Salama SR, Trueheart J, Royer JC, Madden KT (2003) Integrating transcriptional and metabolite profiles to direct the engineering of lovastatin-producing fungal strains. Nat Biotechnol 21:150–156CrossRefGoogle Scholar
  3. Beckonert O, Bollard ME, Ebbels TMD, Keun HC, Antti H, Holmes E, Lindon JC, Nicholson JK (2003) NMR-based metabonomic toxicity classification: Hierarchical cluster analysis and k-nearest-neighbour approaches. Anal Chim Acta 490:3–15CrossRefGoogle Scholar
  4. Bhattacharya M, Fuhrman L, Ingram A, Nickerson KW, Conway T (1995) Single-run separation and detection of multiple metabolic intermediates by anion-exchange high-performance liquid chromatography and application to cell pool extracts prepared from Escherichia coli. Anal Biochem 232:98–106CrossRefGoogle Scholar
  5. Buchholz A, Takors R, Wandrey C (2001) Quantification of intracellular metabolites in Escherichia coli K12 using liquid chromatographic-electrospray ionization tandem mass spectrometric techniques. Anal Biochem 295:129–137CrossRefGoogle Scholar
  6. Buchholz A, Hurlebaus J, Wandrey C, Takors R (2002) Metabolomics: quantification of intracellular metabolite dynamics. Biomol Eng 19:5–15CrossRefGoogle Scholar
  7. Buziol S, Bashir I, Baumeister A, ClaasenW, Noisommit-Rizzi N, Mailinger W, Reuss M (2002) New bioreactor-coupled rapid stopped-flow sampling technique for measurements of metabolite dynamics on a subsecond time scale. Biotechnol Bioeng 80:632–636CrossRefGoogle Scholar
  8. Castrillo JI, Hayes A, Mohammed S, Gaskell SJ, Oliver SG (2003) An optimized protocol for metabolome analysis in yeast using direct infusion electrospray mass spectrometry. Phytochemistry 62:929–937CrossRefGoogle Scholar
  9. Choi HK, Choi YH, Verberne M, Lefeber AWM, Erkelens C, Verpoorte R (2004) Metabolic fingerprinting of wild type and transgenic tobacco plants by 1H NMR and multivariate analysis technique. Phytochemistry 65:857–864CrossRefGoogle Scholar
  10. Dalluge JJ, Smith S, Sanchez-Riera F, McGuire C, Hobson R (2004) Potential of fermentation profiling via rapid measurement of amino acid metabolism by liquid chromatography–tandem mass spectrometry. J Chromatogr A 1043:3–7CrossRefGoogle Scholar
  11. Dandekar T, Moldenhauer F, Builk S, Bertram H, Schuster S (2003) A method for classifying metabolites in topological pathways analysis based on minimization of pathway number. Biosystems 70:255–270CrossRefGoogle Scholar
  12. de Koning W, van Dam K (1992) A method for the determination of changes of glycolytic metabolites in yeast on a subsecond time scale using extraction at neutral pH. Anal Biochem 204:118–123CrossRefGoogle Scholar
  13. de Nijs M, Larsen JS, Gams W, Rombouts FM, Wernars K, Thrane Ul, Notermans SHW (1997) Variations in random amplified polymorphic DNA patterns and secondary metabolite profiles within Fusarium species from cereals from various parts of the Netherlands. Food Microbiol 14:449–457CrossRefGoogle Scholar
  14. Devantier R, Scheithauer B, Villas-Boas S, Pandersen S, Olsson L (2005) Metabolite profiling for analysis of yeast stress response during very high gravity ethanol fermentations. Biotechnol Bioeng 90:703–714CrossRefGoogle Scholar
  15. Dunn WB, Ellis DI (2005) Metabolomics: current analytical platforms and methodologies. Trends Analyt Chem 24:285–294CrossRefGoogle Scholar
  16. Duran AL, Yang J, Wang LJ, Sumner LW (2003) Metabolomics spectral formatting, alignment and conversion tools (MSFACTs). Bioinformatics 19:2283–2293CrossRefGoogle Scholar
  17. Ellis DI, Broadhurst D, Kell DB, Rowland JJ, Goodacre R (2002) Rapid and quantitative detection of the microbial spoilage of meat by Fourier transform infrared spectroscopy and machine learning. Appl Environ Microbiol 68:2822–2828CrossRefGoogle Scholar
  18. Elmroth I, Sundin P, Valeur A, Larsson L, Odham G (1992) Evaluation of chromatographic methods for the detection of bacterial contamination in biotechnical processes. J Microbiol Methods 15:215–228CrossRefGoogle Scholar
  19. Even S, Lindley ND, Cocaign-Bousquet M (2003) Transcriptional, translational and metabolic regulation of glycolysis in Lactococcus lactis subsp. cremoris MG 1363 grown in continuous acidic cultures. Microbiology 149:1935–1944CrossRefGoogle Scholar
  20. Fell DA (2001) Beyond genomics. Trends Genet 17:680–682CrossRefGoogle Scholar
  21. Fiehn O (2001) Combining genomics, metabolome analysis and biochemical modeling to understand metabolic networks. Comp Funct Genomics 2:155–168CrossRefGoogle Scholar
  22. Fiehn O (2002) Metabolomics—the link between genotypes and phenotypes. Plant Mol Biol 48:155–171CrossRefGoogle Scholar
  23. Fiehn O (2003) Metabolic networks of Cucurbita maxima phloem. Phytochemistry 62:875–886CrossRefGoogle Scholar
  24. Förster J, Gombert AK, Nielsen J (2002) A functional genomics approach using metabolomics and in silico pathway analysis. Biotechnol Bioeng 79:703–712CrossRefGoogle Scholar
  25. Gavaghan CL, Wilson ID, Nicholson JK (2002) Physiological variation in metabolic phenotyping and functional genomic studies: use of orthogonal signal correction and PLS-DA. FEBS Lett 530:191–196CrossRefGoogle Scholar
  26. Glanemann C, Loos A, Gorret N, Willis LB, O’Brien XM, Lessard PA, Sinskey AJ (2003) Disparity between changes in mRNA abundance and enzyme activity in Corynebacterium glutamicum: implications for DNA microarray analysis. Appl Microbiol Biotechnol 61:61–68Google Scholar
  27. Gonzalez B, Francosis J, Renaud M (1997) A rapid and reliable method for metabolite extraction in yeast using boiling buffered ethanol. Yeast 13:1347–1355CrossRefGoogle Scholar
  28. Goodacre R, Timmins EM, Burton R, Kaderbhai N, Woodward AM, Kell DB, Rooney PJ (1998) Rapid identification of urinary tract infection bacteria using hyperspectral, whole organism fingerprinting and artificial neural networks. Microbiology 144:1157–1170CrossRefGoogle Scholar
  29. Goodacre R, Vaidyanathan S, Dunn WB, Harrigan GG, Kell DB (2004) Metabolomics by numbers: acquiring and understanding global metabolite data. Trends Biotechnol 22:245–252CrossRefGoogle Scholar
  30. Grivet JP, Delort AM, Portais JC (2003) NMR and microbiology: from physiology to metabolomics. Biochimie 85:823–840CrossRefGoogle Scholar
  31. Gygi SP, Rochon Y, Franza BR, Aebersold R (1999) Correlation between protein and mRNA abundance in yeast. Mol Cell Biol 19:1720–1730Google Scholar
  32. Hajjaj H, Blanc PJ, Goma G, Francois J (1998) Sampling techniques and comparative extraction procedures for quantitative determination of intra- and extracellular metabolites in filamentous fungi. FEMS Microbiol Lett 164:195–200CrossRefGoogle Scholar
  33. Halket JM, Przyborowska A, Stein SE, Mallard WG, Down S, Chalmers RA (1999) Deconvolution gas chromatography/mass spectrometry of urinary organic acids—potential pattern recognition and automated identification of metabolic disorders. Rapid Commun Mass Spectrom 13:279–284CrossRefGoogle Scholar
  34. Hans MA, Heinzle E, Wittmann C (2001) Quantification of intracellular amino acids in batch cultures of Saccharomyces cerevisiae. Appl Microbiol Biotechnol 56:776–779CrossRefGoogle Scholar
  35. Hardy F, Fuell H (2003) Database, data modeling and schemas. In: Harrigan GG, Goodacre R (eds) Metabolic profiling: its role in biomarker discovery and gene function analysis. Kluwer, BostonGoogle Scholar
  36. Harrigan GG, Goodacre R (eds) (2003) Metabolic profiling: its role in biomarker discovery and gene function analysis. Kluwer, BostonGoogle Scholar
  37. Horning EC, Horning MG (1971) Human metabolic profiles obtained by GC and GC/MS. J Chromatogr Sci 9:129–140Google Scholar
  38. Jenkins H, Hardy N, Beckmann M, Draper J, Smith AR, Taylor J, Fiehn O, Goodacre R, Bino RJ, Hall R, Kopka J, Lane GA, Lange BM, Liu JR, Mendes P, Nikolau BJ, Oliver SG, Paton NW, Rhee S, Roessner-Tunali U, Saito K, Smedsgaard J, Sumner LW, Wang T, Walsh S, Wurtele ES, Kell DB (2004) A proposed framework for the description of plant metabolomics experiments and their results. Nat Biotechnol 22:1601–1606CrossRefGoogle Scholar
  39. Jensen NBS, Jokumsen KV, Villadsen J (1999) Determination of the phosporylated sugars of the Embden–Meyerhoff–Parnas pathway in Lactococcus lactis using a fast sampling technique and solid phase extraction. Biotechnol Bioeng 63:357–362CrossRefGoogle Scholar
  40. Kaderbhai NN, Broadhurst DI, Ellis DI, Goodacre R, Kell DB (2003) Functional genomics via metabolic footprinting: monitoring metabolite secretion by Escherichia coli tryptophan metabolism mutants using FT-IR and direct injection electrospray mass spectrometry. Comp Funct Genomics 4:376–391CrossRefGoogle Scholar
  41. Kell DB (2002) Metabolomics and machine learning: explanatory analysis of complex metabolome data using genetic programming to produce simple, robust rules. Mol Biol Rep 29:237–241CrossRefGoogle Scholar
  42. Kell DB, Darby RM, Draper J (2001) Genomic computing: explanatory analysis of plant expression profiling data using machine learning. Plant Physiol 126:943–951CrossRefGoogle Scholar
  43. Krömer JO, Sorgenfrei O, Klopprogge K, Heinzle E, Wittmann C (2004) In-depth profiling of lysine-producing Corynebacterium glutamicum by combined analysis of the transcriptome, metabolome, and fluxome. J Bacteriol 186:1769–1784CrossRefGoogle Scholar
  44. Krömer JO, Fritz M, Heinzle E, Wittmann C (2005) In vivo quantification of intracellular amino acids and intermediates of the methionine pathway in Corynebacterium glutamicum. Anal Biochem 340:171–173CrossRefGoogle Scholar
  45. Lafaye A, Labarre J, Tabet JC, Ezan E, Junot C (2005a) Liquid chromatography–mass spectrometry and 15N metabolic labeling for quantitative metabolic profiling. Anal Chem 77:2026–2033CrossRefGoogle Scholar
  46. Lafaye A, Junot C, Pereira Y, Lagniel G, Tabet JC, Ezan E, Labarre J (2005b) Combined proteome and metabolite-profiling analyses reveal surprising insights into yeast sulfur metabolism. J Biol Chem 280:24723–24730CrossRefGoogle Scholar
  47. Lange HC, Eman M, van Zuijlen G, Visser D, van Dam JC, Frank J, Teixeira de Mattos MJ, Heijnen JJ (2001) Improved rapid sampling for in vivo kinetics of intracellular metabolites in Saccharomyces cerevisiae. Biotechnol Bioeng 75:406–415CrossRefGoogle Scholar
  48. Lee PS, Shaw LB, Choe LH, Mehra A, Hatzimanikatis V, Lee KH (2003) Insights into the relation between mrna and protein expression patterns: II. Experimental observations in Escherichia coli. Biotechnol Bioeng 84:834–841CrossRefGoogle Scholar
  49. Lee SY, Lee DY, Kin TY (2005) Systems biotechnology for stain improvement. Trends Biotechnol 23:349–358CrossRefGoogle Scholar
  50. Letisse F, Lindley ND (2000) An intracellular metabolite quantification technique applicable to polysaccharide-producing bacteria. Biotechnol Lett 22:1673–1677CrossRefGoogle Scholar
  51. Lim GB, Lee SY, Lee EK, Haam SJ, Kim WS (2002) Separation of astaxanthin from red yeast Phaffia rhodozyma by supercritical carbon dioxide extraction. Biochem Eng J 11:181–187CrossRefGoogle Scholar
  52. Maharjan RP, Ferenci T (2003) Global metabolite analysis: the influence of extraction methodology on metabolome profiles of Escherichia coli. Anal Biochem 313:145–154CrossRefGoogle Scholar
  53. Mandal M, Boese B, Barrick JE, Winkler WC, Breaker RR (2003) Riboswitches control fundamental biochemical pathways in Bacillus subtilis and other bacteria. Cell 113:577–586CrossRefGoogle Scholar
  54. Markuszewski MJ, Britz-McKibbin P, Terabe S, Matsuda K, Nishioka T (2003) Determination of pyridine and adenine nucleotide metabolites in Bacillus subtilis cell extract by sweeping borate complexation capillary electrophoresis. J Chromatogr A 989:293–301CrossRefGoogle Scholar
  55. Martinez-Antonio A, Collado-Vides J (2003) Identifying global regulators in transcriptional regulatory networks in bacteria. Curr Opin Microbiol 6:482–489CrossRefGoogle Scholar
  56. Mashego MR, Wu L, Van Dam JC, Ras C, Vinke JL, Van Winden WA, Van Gulik WM, Heijnen JJ (2004) MIRACLE: mass isotopomer ratio analysis of U-13C-labeled extracts—a new method for accurate quantification of changes in concentrations of intracellular metabolites. Biotechnol Bioeng 85:620–628CrossRefGoogle Scholar
  57. Mashego MR, Jansen ML, Vinke JL, van Gulik WM, Heijnen JJ (2005) Changes in the metabolome of Saccharomyces cerevisiae associated with evolution in aerobic glucose-limited chemostats. FEMS Yeast Res 5:419–430CrossRefGoogle Scholar
  58. Nicholson JK, Wilson ID (2003) Understanding ‘global’ systems biology: Metabonomics and the continuum of metabolism. Nat Rev Drug Discov 2:668–676CrossRefGoogle Scholar
  59. Nicholson JK, Lindon JC, Holmes E (1999) ‘Metabonomics’: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica 29:1181–1189CrossRefGoogle Scholar
  60. Nielsen J, Oliver S (2005) The next wave in metabolome analysis. Trends Biotechnol 23:544–546CrossRefGoogle Scholar
  61. Nielsen KF, Smedsgaard J (2003) Fungal metabolite screening: database of 474 mycotoxins and fungal metabolites for dereplication by standardized liquid chromatography-UV-mass spectrometry methodology. J Chromatogr A 1002:111–136CrossRefGoogle Scholar
  62. Oldiges M, Takors R (2005) Applying metabolic profiling techniques for stimulus–response experiments: chances and pitfalls. Adv Biochem Eng Biotechnol 92:173–196Google Scholar
  63. Oliver SG (2002) Functional genomics: lessons from yeast. Philos Trans R Soc Lond B Biol Sci 357:17–23CrossRefGoogle Scholar
  64. Oliver SG, Winson MK, Kell DB, Baganz F (1998) Systematic functional analysis of the yeast genome. Trends Biotechnol 16:373–378CrossRefGoogle Scholar
  65. Panagiotou G, Villas-Boas SG, Christakopoulos P, Nielsen J, Olsson L (2005) Intracellular metabolite profiling of Fusarium oxysporum converting glucose to ethanol. J Biotechnol 115(4):425–434CrossRefGoogle Scholar
  66. Ott KH, Aranibar N, Singh B, Stockton GW (2003) Metabonomics classifies pathways affected by bioactive compounds. Artificial neural network classification of NMR spectra of plant extracts. Phytochemistry 62:971–985CrossRefGoogle Scholar
  67. Raamsdonk LM, Teusink B, Broadhurst D, Zhang N, Hayes A, Walsh MC, Berden JA, Brindle KM, Kell DB, Rowland JJ, Westerhoff HV, van Dam K, Oliver SG (2001) A functional genomics strategy that uses metabolome data to reveal the phenotype of silent mutations. Nat Biotechnol 19:45–50CrossRefGoogle Scholar
  68. Roessner U, Luedemann A, Brust D, Fiehn O, Linke T, Willmitzer L, Fernie AR (2001) Metabolic profiling allows comprehensive phenotyping of genetically or environmentally modified plant systems. Plant Cell 13:11–29CrossRefGoogle Scholar
  69. Ruijter GJG, Visser J (1996) Determination of intermediary metabolites in Aspergillus niger. J Microbiol Methods 25:295–302CrossRefGoogle Scholar
  70. Schaefer U, Boos W, Takors R, Weuster-Botz D (1999) Automated sampling device for monitoring intracellular metabolite dynamics. Anal Biochem 270:88–96CrossRefGoogle Scholar
  71. Schauer N, Steinhauser D, Strelkov S, Schomburg D, Allison G, Moritz T, Lundgren K, Roessner-Tunali U, Forbes M, Willmitzer L (2005) GC-MS libraries for the rapid identification of metabolites in complex biological samples. FEBS Lett 579:1332–1337CrossRefGoogle Scholar
  72. Schmidt C (2004) Metabolomics takes its place as latest up-and-coming “omic” science. J Natl Cancer Inst 96:733–734Google Scholar
  73. Shurubor YI, Paolucci U, Krasnikov BF, Matson WR, Kristal BS (2005) Analytical precision, biological variation, and mathematical normalization in high data density metabolomics. Metabolomics 1:75–85CrossRefGoogle Scholar
  74. Smedsgaard J (1997) Micro-scale extraction procedure for standardized screening of fungal metabolite production in cultures. J Chromatogr A 760:264–270CrossRefGoogle Scholar
  75. Smedsgaard J, Nielsen J (2005) Metabolite profiling of fungi and yeast: from phenotype to metabolome by MS and informatics. J Exp Bot 56(410):273–286CrossRefGoogle Scholar
  76. Smilde AK, Jansen JJ, Hoefsloot HC, Lamers RJ, van der Greef J, Timmerman MF (2005) ANOVA-simultaneous component analysis (ASCA): a new tool for analyzing designed metabolomics data. Bioinformatics 21:3043–3048CrossRefGoogle Scholar
  77. Smits HP, Cohen A, Buttler T, Nielsen J, Olsson L (1998) Cleanup and analysis of sugar phosphates in biological extracts by using solid-phase extraction and anion-exchange chromatography with pulsed amperometric detection. Anal Biochem 261:36–42CrossRefGoogle Scholar
  78. Soga T, Ueno Y, Naraoka H, Ohashi Y, Tomita M, Nishioka T (2002) Simultaneous determination of anionic intermediates for Bacillus subtilis metabolic pathways by capillary electrophoresis electrospray ionization mass spectrometry. Anal Chem 74:2233–2239CrossRefGoogle Scholar
  79. Soga T, Ohashi Y, Ueno Y, Naraoka H, Tomita M, Nishioka T (2003) Quantitative metabolome analysis using capillary electrophoresis mass spectrometry. J Proteome Res 2:488–494CrossRefGoogle Scholar
  80. Stein SE (1999) An integrated method for spectrum extraction and compound identification from gas chromatography/mass spectrometry. J Am Soc Mass Spectrom 10:770–781CrossRefGoogle Scholar
  81. Stephanopoulos G, Apler H, Moxley J (2004) Exploiting biological complexity for strain improvement through systems biology. Nat Biotechnol 22:1261–1267CrossRefGoogle Scholar
  82. Streikov S, von Elstermann M, Schomburg D (2004) Comprehensive analysis of metabolites in Corynebacterium glutamicum by gas chromatography/mass spectrometry. Biol Chem 385:853–861CrossRefGoogle Scholar
  83. Taylor J, King RD, Altmann T, Fiehn O (2002) Application of metabolomics to plant genotype discrimination using statistics and machine learning. Bioinformatics 18(Suppl 2):241–248Google Scholar
  84. Terabe S, Markuszewksi MJ, Inoue N, Otsuka K, Nishioka T (2001) Capillary electrophoretic techniques toward the metabolome analysis. Pure Appl Chem 73:1563–1572CrossRefGoogle Scholar
  85. ter Kuile BH, Westerhoff HV (2001) Transcriptome meets metabolome: hierarchical and metabolic regulation of the glycolytic pathway. FEBS Lett 500:169–171CrossRefGoogle Scholar
  86. Theobald U, Mailinger W, Baltes M, Rizzi M, Reuss M (1997) In vivo analysis of metabolic dynamics in Saccharomyces cerevisiae: I. Experimental observations. Biotechnol Bioeng 55:305–316CrossRefGoogle Scholar
  87. Tweeddale H, Notley-McRobb L, Ferenci T (1998) Effect of slow growth on metabolism of Escherichia coli, as revealed by global metabolite pool (“Metabolome”) analysis. J Bacteriol 180:5109–5116Google Scholar
  88. Urbanczyk-Wochniak E, Luedemann A, Kopka J, Selbig J, Roessner-Tunali U, Willmitzer L, Fernie AR (2003). Parallel analysis of transcript and metabolic profiles: a new approach in systems biology. EMBO Rep 4:989–993CrossRefGoogle Scholar
  89. Villas-Boas SG, Moxley JF, Kesson M, Stephanopoulos G, Nielsen J (2005) High-throughput metabolic state analysis: the missing link in integrated functional genomics of yeasts. Biochem J 388:669–677CrossRefGoogle Scholar
  90. Visser D, van Zuylen GA, van Dam JC, Oudshoorn A, Eman MR, Ras C, van Gulik WM, Frank J, van Dedem GWK, Heijnen JJ (2002) Rapid sampling for analysis of in vivo kinetics using the BioScope: a system for continuous-pulse experiments. Biotechnol Bioeng 79:674–681CrossRefGoogle Scholar
  91. Wang W, Gao J, Chiao J, Zhao G, Jiang W (2004) A novel two-component system amrB–amkB involved in the regulation of central carbohydrate metabolism in rifamycin SV-producing Amycolatopsis mediterranei U32. Curr Microbiol 48:14–19CrossRefGoogle Scholar
  92. Werf MJ (2005) Towards replacing closed with open target selection approaches. Trends Biotechnol 23:11–16CrossRefGoogle Scholar
  93. Wilkinson SR, Young M, Goodacre R, Morris JG, Farrow JAE, Collins MD (1995) Phenotypic and genotypic differences between certain strains of Clostridium acetobutylicum. FEMS Microbiol Lett 125:199–204CrossRefGoogle Scholar
  94. Wittmann C, Hans M, van Winden WA, Ras C, Heijnen JJ (2005) Dynamics of intracellular metabolites of glycolysis and TCA cycle during cell-cycle-related oscillation in Saccharomyces cerevisiae. Biotechnol Bioeng 89:839–847CrossRefGoogle Scholar
  95. Wu L, Mashego MR, van Dam JC, Proell AM, Vinke JL, Ras C, van Winden WA, van Gulik WM, Heijnen JJ (2005) Quantitative analysis of the microbial metabolome by isotope dilution mass spectrometry using uniformly 13C-labeled cell extracts as internal standards. Anal Biochem 336:164–171CrossRefGoogle Scholar
  96. Yang C, Hua Q, Baba T, Mori H, Shimizu K (2003) Analysis of Escherichia coli anaplerotic metabolism and its regulation mechanisms from the metabolic responses to altered dilution rates and phosphoenolpyruvate carboxykinase knockout. Biotechnol Bioeng 84:129–144CrossRefGoogle Scholar
  97. Zaldivar J, Borges A, Johansson B, Smits HP, Villas-Boas SG, Nielsen J, Olsson L (2002) Fermentation performance and intracellular metabolite patterns in laboratory and industrial xylose-fermenting Saccharomyces cerevisiae. Appl Microbiol Biotechnol 59:436–442CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Qing-zhao Wang
    • 1
  • Chan-yuan Wu
    • 1
  • Tao Chen
    • 1
  • Xun Chen
    • 1
  • Xue-ming Zhao
    • 1
    Email author
  1. 1.Department of Biochemical Engineering, School of Chemical Engineering and TechnologyTianjin UniversityTianjinPeople’s Republic of China

Personalised recommendations