Perspectives for synthesis and production of polyurethanes and related polymers by enzymes directed toward green and sustainable chemistry

  • Shuichi Matsumura
  • Yasuyuki Soeda
  • Kazunobu Toshima


Enzyme-catalyzed polymerization and degradation will play an important role in both the synthesis and chemical recycling of green and sustainable polyurethane. This minireview covers the new synthetic routes to polyurethane without using diisocyanate, the biodegradation of polyurethane, and the enzymatic synthesis and the chemical recycling of poly(ester-urethane) (PEU) and poly(carbonate-urethane) (PCU). The lipase-catalyzed polymerization of low molecular weight and biodegradable urethanediols with short-chain dialkyl carbonate and alkanedioates produced PCU and PEU, respectively. They were readily degraded in an organic solvent into the repolymerizable cyclic oligomers by lipase as a novel chemical recycling. These results will be applicable for the production strategies of green and sustainable polyurethanes.


  1. Bhabhe MD, Athawale VD (1998) Chemoenzymatic synthesis of urethane oil based on spherical functional group oil. J Appl Polym Sci 69:1451–1458CrossRefGoogle Scholar
  2. Clements JH (2003) Reactive applications of cyclic alkylene carbonates. Ind Eng Chem Res 42:663–674CrossRefGoogle Scholar
  3. Darby RT, Kaplan AM (1968) Fungal susceptibility of polyurethanes. Appl Microbiol 16:900–905Google Scholar
  4. Delaby R, Sekera A, Chabrier P, Pignaniol P (1953) β-Hydroxyalkylurethanes. II. p-Nitrobenzoate and p-aminobenzoate of β-hydroxyalkylurethanes. Bull Soc Chim Fr 273–275Google Scholar
  5. Dupret I, David C, Colpaert M, Loutz J-M, Wauven C (1999) Biodegradation of poly(ester-urethane)s by a pure strain of micro-organisms. Macromol Chem Phys 200:2508–2518CrossRefGoogle Scholar
  6. Hall HK Jr (1958) Polymerization and ring strain in bridged bicyclic compounds. J Am Chem Soc 80:6412–6420CrossRefGoogle Scholar
  7. Hall HK Jr, Schneider AK (1958) Polymerization of cyclic esters, urethanes, ureas and imides. J Am Chem Soc 80:6409–6412CrossRefGoogle Scholar
  8. Howard GT (2002) Biodegradation of polyurethane: a review. Int Biodeterior Biodegrad 49:245–252CrossRefGoogle Scholar
  9. Hung AYC (2003) Effect of the repeated unit length of guest polymers on the molecular motion of polymer blends within a miscible window. J Polym Sci Part B Polym Phys 41:679–686CrossRefGoogle Scholar
  10. Ihata O, Kayaki Y, Ikariya T (2004) Synthesis of thermoresponsive polyurethane from 2-methylaziridine and supercritical carbon dioxide. Angew Chem Int Ed 43:717–719CrossRefGoogle Scholar
  11. Kanaya K, Takahashi S (1994) Decomposition of polyurethane foams by alkanolamines. J Appl Polym Sci 51:675–682CrossRefGoogle Scholar
  12. Kihara N, Endo T (1993) Synthesis and properties of poly(hydroxyurethane)s. J Polym Sci A Polym Chem 31:2765–2773CrossRefGoogle Scholar
  13. Kihara N, Kushida Y, Endo T (1996) Optically active poly(hydroxyurethane)s derived from cyclic carbonate and l-lysine derivatives. J Polym Sci A Polym Chem 34:2173–2179CrossRefGoogle Scholar
  14. Kobayashi S, Uyama H, Takamoto T (2000) Lipase-catalyzed degradation of polyesters in organic solvents, a new methodology of polymer recycling using enzyme as catalyst. Biomacromolecules 1:3–5CrossRefGoogle Scholar
  15. Kusan J, Keul H, Höcker H (2001) Cationic ring-opening polymerization of tetramethylene urethane. Macromolecules 34:389–395CrossRefGoogle Scholar
  16. Marchant RE, Zhao Q, Anderson JM, Hiltner A (1987) Degradation of a poly(ether urethane urea) elastomer: infra-red and XPS studies. Polymer 28:2032–2039CrossRefGoogle Scholar
  17. Matsumura S, Ebata H, Toshima K (2000) A new strategy for sustainable polymer recycling using enzyme: poly(ɛ-caprolactone). Macromol Rapid Commun 21:860–863CrossRefGoogle Scholar
  18. Matsumura S, Harai S, Toshima K (2001) Lipase-catalyzed transformation of poly(trimethylene carbonate) into cyclic monomer, trimethylene carbonate: a new strategy for sustainable polymer recycling using an enzyme. Macromol Rapid Commun 22:215–218CrossRefGoogle Scholar
  19. McCabe RW, Taylor A (2002) Synthesis of novel polyurethane polyesters using the enzyme Candida antarctica lipase B. Chem Commun 9:934–935CrossRefGoogle Scholar
  20. McCabe RW, Taylor A (2004) Synthesis of novel polyurethane polyesters using the enzyme Candida antarctica lipase B. Green Chem 6:151–155CrossRefGoogle Scholar
  21. Nakajima-Kambe T, Onuma F, Kimpara N, Nakahara T (1995) Isolation and characterization of a bacterium which utilizes polyester polyurethane as a sole carbon and nitrogen source. FEMS Microbiol Lett 129:39–42CrossRefGoogle Scholar
  22. Nakajima-Kambe T, Onuma F, Akutsu Y, Nakahara T (1997) Determination of the polyester polyurethane breakdown products and distribution of the polyurethane degrading enzyme of Comamonas acidovorans strain TB-35. J Ferment Bioeng 83:456–460CrossRefGoogle Scholar
  23. Nakajima-Kambe T, Shigeno-Akutsu Y, Nomura N, Onuma F, Nakahara T (1999) Microbial degradation of polyurethane, polyester polyurethanes and polyether polyurethanes. Appl Microbiol Biotechnol 51:134–140CrossRefGoogle Scholar
  24. Neffgen S, Keul H, Höcker H (1997) Cationic ring-opening polymerization of trimethylene urethane: a mechanistic study. Macromolecules 30:1289–1297CrossRefGoogle Scholar
  25. Neffgen S, Keul H, Höcker H (1998) Polymerization of 2,2-dimethyltrimethylene urethane; a disfavored process. Macromol Chem Phys 199:197–206CrossRefGoogle Scholar
  26. Neffgen S, Kusan J, Fey T, Keul H, Höcker H (2000) Synthesis and thermal properties of [n]-polyurethanes. Macromol Chem Phys 201:2108–2114CrossRefGoogle Scholar
  27. Nomura N, Shigeno-Akutsu Y, Nakajima-Kambe T, Nakahara T (1998) Cloning and sequence analysis of a polyurethane esterase of Comamonas acidovorans TB-35. J Ferment Bioeng 86:339–345CrossRefGoogle Scholar
  28. Okajima S, Kondo R, Toshima K, Matsumura S (2003) Lipase-catalyzed transformation of poly(butylene adipate) and poly(butylene succinate) into repolymerizable cyclic oligomers. Biomacromolecules 4:1514–1519CrossRefGoogle Scholar
  29. Ohshiro T, Shinji M, Morita Y, Takayama Y, Izumi Y (1997) Novel L-specific cleavage of the urethane bond of t-butoxycarbonylamino acids by whole cells of Corynebacterium aquaticum. Appl Microbiol Biotechnol 48:546–548CrossRefGoogle Scholar
  30. Osanai Y, Toshima K, Matsumura S (2003) Enzymatic degradation of poly(R,S-3-hydroxybutanoate) to cyclic oligomers under continuous flow. Green Chem 5:567–570CrossRefGoogle Scholar
  31. Owen S, Otani T, Masaoka S, Ohe T (1996) The biodegradation of low-molecular-weight urethane compounds by a strain of Exophiala jeanselmei. Biosci Biotechnol Biochem 60:244–248CrossRefGoogle Scholar
  32. Parvaresh F, Roberts H, Thomas D, Legoy MD (1992) Gas-phase transesterification reactions catalyzed by lipolytic enzymes. Biotechnol Bioeng 39:467–473CrossRefGoogle Scholar
  33. Pozo M, Gotor V (1993a) Chiral carbamates through an enzymatic alkoxycarbonylation reaction. Tetrahedron 49:4321–4326CrossRefGoogle Scholar
  34. Pozo M, Gotor V (1993b) Kinetic resolution of vinyl carbonates through a lipase-mediated synthesis of their carbonate and carbamate derivatives. Tetrahedron 49:10725–10732CrossRefGoogle Scholar
  35. Pozo M, Gotor V (1995) Double enantioselective enzymatic synthesis of carbonates and urethanes. Tetrahedron Asymmetry 6:2797–2802CrossRefGoogle Scholar
  36. Rokicki G, Piotrowska A (2002) A new route to polyurethanes from ethylene carbonate, diamines and diols. Polymer 43:2927–2935CrossRefGoogle Scholar
  37. Santerre JP, Labow RS, Duguay DG, Erfle D, Adams GA (1994) Biodegradation evaluation of polyether and polyether-urethanes with oxidative and hydrolytic enzymes. J Biomed Mater Res 28:1187–1199CrossRefGoogle Scholar
  38. Schmitz F, Kuel H, Höcker H (1997) Alternating copolymers of tetramethylene urea with 2,2-dimethyltrimethylene carbonate and ethylene carbonate; preparation of the corresponding polyurethanes. Macromol Rapid Commun 18:699–706CrossRefGoogle Scholar
  39. Schmitz F, Keul H, Höcker H (1998) Copolymerization of 2,2-dimethyltrimethylene carbonate with tetramethylene urea: a new route to the polyurethane. Polymer 39:3179–3186CrossRefGoogle Scholar
  40. Simioni F, Modesti M, Tavan M (1987) Polyol recovery from elastomer polyurethane waste. Cell Polym 6:27–41Google Scholar
  41. Soeda Y, Toshima K, Matsumura S (2004) Enzymatic synthesis and chemical recycling of poly(carbonate-urethane). Macromol Biosci 4:721–728CrossRefGoogle Scholar
  42. Soeda Y, Toshima K, Matsumura S (2005) Synthesis and chemical recycling of novel poly(ester-urethane)s using an enzyme. Macromol Biosci 5:277–288CrossRefGoogle Scholar
  43. Takamoto T, Shirasaka H, Uyama H, Kobayashi S (2001) Lipase-catalyzed hydrolytic degradation of polyurethane in organic solvent. Chem Lett 6:492–493CrossRefGoogle Scholar
  44. Tokiwa Y (2002) Biodegradation of polyurethanes. In: Matsumura S, Steinbüchel A (eds) Biopolymers, vol 9. Miscellaneous biopolymers and biodegradation of polymers, 1st edn. Wiley-VCH, Weinheim, pp 323–328Google Scholar
  45. Tokiwa Y, Suzuki T, Takeda K (1988) 2 Types of lipases in hydrolysis of polyester. Agric Biol Chem 52:1937–1943Google Scholar
  46. Tomita H, Sanda F, Endo T (2001a) Structural analysis of polyhydroxyurethane obtained by polyaddition of bifunctional five-membered cyclic carbonate and diamine based on the model reaction. J Polym Sci A Polym Chem 39:851–859CrossRefGoogle Scholar
  47. Tomita H, Sanda F, Endo T (2001b) Polyaddition behavior of bis(five- and six-membered cyclic carbonate)s with diamine. J Polym Sci A Polym Chem 39:860–867CrossRefGoogle Scholar
  48. Turner NA, Vulfson EN (2000) At what temperature can enzymes maintain their catalytic activity? Enzyme Microb Technol 27:108–113CrossRefGoogle Scholar
  49. Turner NA, Duchateau DB, Vulfson EN (1995) Effect of hydration on thermostability of serine esterases. Biotechnol Lett 17:371–376CrossRefGoogle Scholar
  50. Versteegen RM, Sijbesma RP, Meijer EW (1999) [n]-Polyurethanes: synthesis and characterization. Angew Chem Int Ed 38:2917–2919CrossRefGoogle Scholar
  51. Volkin DB, Staubli A, Langer R, Klibanov AM (1991) Enzyme thermoinactivation in anhydrous organic-solvents. Biotechnol Bioeng 37:843–853CrossRefGoogle Scholar
  52. Wang GB, Santerre JP, Labow RS (1997) High-performance liquid chromatographic separation and tandem mass spectrometric identification of breakdown products associated with the biological hydrolysis of a biomedical polyurethane. J Chromatogr B 698:69–80CrossRefGoogle Scholar
  53. Zaks A, Klibanov AM (1984) Enzymatic catalysis in organic media at 100°C. Science 224:1249–1251CrossRefGoogle Scholar
  54. Zhao Q, Marchant RE, Anderson JM, Hiltner A (1987) Long term biodegradation in vitro of poly(ether urethane urea): a mechanical property study. Polymer 28:2040–2046CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Shuichi Matsumura
    • 1
  • Yasuyuki Soeda
    • 1
  • Kazunobu Toshima
    • 1
  1. 1.Department of Applied Chemistry, Faculty of Science and TechnologyKeio UniversityKohoku-kuJapan

Personalised recommendations