Applied Microbiology and Biotechnology

, Volume 72, Issue 2, pp 361–367 | Cite as

Motility influences biofilm architecture in Escherichia coli

  • Thomas K. WoodEmail author
  • Andrés F. González Barrios
  • Moshe Herzberg
  • Jintae Lee
Applied Microbial and Cell Physiology


Eight Escherichia coli strains were studied in minimal medium with a continuous flow system using confocal microscopy. K12 wild-type strains ATCC 25404 and MG1655 formed the best biofilms (∼43 μm thick, 21 to 34% surface coverage). JM109, DH5α, and MG1655 motA formed intermediate biofilms (∼13 μm thick, 41 to 58% surface coverage). BW25113, MG1655 qseB, and MG1655 fliA had poor biofilms (surface coverage less than 5%). The best biofilm-formers, ATCC 25404 and MG1655, displayed the highest motility, whereas the worst biofilm former, BW25113, was motility-impaired. The differences in motility were due to differences in expression of the motility loci qseB, flhD, fliA, fliC, and motA (e.g., qseB expression in MG1655 was 139-fold higher than BW25113 and 209-fold higher than JM109). Motility affected the biofilm architecture as those strains which had poor motility (E. coli JM109, E. coli MG1655 motA, and DH5α) formed flatter microcolonies compared with MG1655 and ATCC 25404, which had more dramatic vertical structures as a result of their enhanced motility. The presence of flagella was also found to be important as qseB and fliA mutants (which lack flagella) had less biofilm than the isogenic paralyzed motA strain (threefold less thickness and 15-fold less surface coverage).


Extracellular Polymeric Substance Conjugation Plasmid Rhamnolipid Synthesis Continuous Flow Cell Affect Cell Attachment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank A. Heydorn from the Technical University of Denmark for kindly providing COMSTAT, S. Molin from the Technical University of Denmark for sending plasmid pCM18, and J. Kaper from the University of Maryland for sending plasmids pVS159, pVS176, pVS175, pVS182, and pVS183.


  1. Beloin C, Valle J, Latour-Lambert P, Faure P, Kzreminski M, Balestrino D, Haagensen JAJ, Molin S, Prensier G, Arbeille B, Ghigo J-M (2004) Global impact of mature biofilm lifestyle on Escherichia coli K-12 gene expression. Mol Microbiol 51:659–674CrossRefPubMedGoogle Scholar
  2. Blattner FR, Planrett G III, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y (1997) The complete genome sequence of Escherichia coli K-12. Science 277:1453–1462CrossRefPubMedGoogle Scholar
  3. Boles BR, Thoendel M, Singh PK (2004) Self-generated diversity produces “insurance effects” in biofilm communities. Proc Natl Acad Sci USA 101:16630–16635CrossRefPubMedGoogle Scholar
  4. Branda SS, Vik Å, Friedman L, Kolter R (2005) Biofilms: the matrix revisited. Trends Microbiol 13:20–26CrossRefPubMedGoogle Scholar
  5. Chang I, Gilbert ES, Eliashberg N, Keasling JD (2003) A three-dimensional stochastic simulation of biofilm growth and transport-related factors that affect structure. Microbiol 149:2859–2871CrossRefGoogle Scholar
  6. Chilcott GS, Hughes KT (2000) Coupling of flagellar gene expression to flagellar assembly in Salmonella enterica serovar typhimurium and Escherichia coli. Microbiol Mol Biol Rev 64:694–708CrossRefPubMedGoogle Scholar
  7. Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97:6640–6645CrossRefPubMedGoogle Scholar
  8. Davey ME, Caiazza NC, O’Toole GA (2003) Rhamnolipid surfactant production affects biofilm architecture in Pseudomonas aeruginosa PAO1. J Bacteriol 185:1027–1036CrossRefPubMedGoogle Scholar
  9. Elvers KT, Lappin-Scott HM (2000) Biofilms and biofouling, 2nd edn. Academic, San Diego, CaliforniaGoogle Scholar
  10. Espinosa-Urgel M (2003) Resident parking only: rhamnolipids maintain fluid channels in biofilms. J Bacteriol 185:699–700CrossRefPubMedGoogle Scholar
  11. Fishman A, Tao Y, L Rui, Wood TK (2005) Controlling the regiospecific oxidation of aromatics via active site engineering of toluene para-monooxygenase of Ralstonia pickettii PKO1. J Biol Chem 280:506–514PubMedGoogle Scholar
  12. Ghigo J-M (2001) Natural conjugative plasmids induce bacterial biofilm development. Nature 412:442–445CrossRefPubMedGoogle Scholar
  13. Hansen MC, Palmer RJ Jr, Udsen C, White DC, Molin S (2001) Assessment of GFP fluorescence in cells of Streptococcus gordonii under conditions of low pH and low oxygen concentration. Microbiol 147:1383–1391Google Scholar
  14. Heydorn A, Ersboll B, Kato J, Hentzer M, Parsek MR, Tolker-Nielsen T, Givskov M, Molin S (2002) Statistical analysis of Pseudomonas aeruginosa biofilm development: impact of mutations in genes involved in twitching motility, cell-to-cell signaling, and stationary-phase sigma factor expression. Appl Environ Microbiol 68:2008–2017CrossRefPubMedGoogle Scholar
  15. Heydorn A, Nielsen AT, Hentzer M, Sternberg C, Givskov M, Ersbøll BK, Molin S (2000) Quantification of biofilm structures by the novel computer program COMSTAT. Microbiol 146:2395–2407Google Scholar
  16. Kang Y, Durfee T, Glasner JD, Qiu Y, Frisch D, Winterberg KM, Blatnner FR (2004) Systematic mutagenesis of the Escherichia coli genome. J Bacteriol 186:4921–4930CrossRefPubMedGoogle Scholar
  17. Lazazzera BA (2005) Lessons from DNA microarray analysis: the gene expression profile of biofilms. Curr Opin Microbiol 8:222–227CrossRefPubMedGoogle Scholar
  18. Lequette Y, Greenberg EP (2005) Timing and localization of rhamnolipid synthesis gene expression in Pseudomonas aeruginosa biofilms. J Bacteriol 187:37–44CrossRefPubMedGoogle Scholar
  19. Pham TH, Webb JS, Rehm BHA (2004) The role of polyhydroxyalkanoate biosynthesis by Pseudomonas aeruginosa in rhamnolipid and alginate production as well as stress tolerance and biofilm formation. Microbiol 150:3405–3413CrossRefPubMedGoogle Scholar
  20. Potera C (1999) Forging a link between biofilms and disease. Science 283:1837–1839CrossRefPubMedGoogle Scholar
  21. Pratt LA, Kolter R (1998) Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili. Mol Microbiol 30:285–293CrossRefPubMedGoogle Scholar
  22. Reisner A, Haagensen JAJ, Schembri MA, Zechner EL, Molin S (2003) Development and maturation of Escherichia coli K-12 biofilms. Mol Microbiol 48:933–946CrossRefPubMedGoogle Scholar
  23. Ren D, Bedzyk LA, Thomas SM, Ye RW, Wood TK (2004) Gene expression in Escherichia coli biofilms. Appl Microbiol Biotechnol 64:515–524CrossRefPubMedGoogle Scholar
  24. Ren D, Sims JJ, Wood TK (2001) Inhibition of biofilm formation and swarming of Escherichia coli by (5Z)-4-bromo-5-(bromomethylene)-3-butyl-2(5H)-furanone. Environ Microbiol 3:731–736CrossRefPubMedGoogle Scholar
  25. Rodriguez RL, Tait RC (1983) Recombinant DNA techniques: an introduction. Benjamin/Cummings Publishing, Menlo Park, CAGoogle Scholar
  26. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning, a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, NYGoogle Scholar
  27. Schembri MA, Kjærgaard K, Klemm P (2003) Global gene expression in Escherichia coli biofilms. Mol Microbiol 48:253–267CrossRefPubMedGoogle Scholar
  28. Sperandio V, Torres AG, Kaper JB (2002) Quorum sensing Escherichia coli regulators B and C (QseBC): a novel two-component regulatory system involved in the regulation of flagella and motility by quorum sensing in E. coli. Mol Microbiol 43:809–821CrossRefPubMedGoogle Scholar
  29. Stanley NR, Britton RA, Grossman AD, Lazazzera BA (2003) Identification of catabolite repression as a physiological regulator of biofilm formation by Bacillus subtilis by use of DNA microarrays. J Bacteriol 185:1951–1957CrossRefPubMedGoogle Scholar
  30. Stoodley P, Lewandowski Z, Boyle JD, Lappin-Scott HM (1999) The formation of migratory ripples in a mixed species bacterial biofilm growing in turbulent flow. Environ Microbiol 1:447–455CrossRefPubMedGoogle Scholar
  31. Szomolay B, Klapper I, Dockerty J, Stewart PS (2005) Adaptative responses to antimicrobial agents in biofilms. Environ Microbiol 7:1186–1191CrossRefPubMedGoogle Scholar
  32. Walker SL, Redman JA, Elimelech M (2004) Role of cell surface lipopolysaccharides in Escherichia coli K12 adhesion and transport. Langmuir 20:7736–7746CrossRefPubMedGoogle Scholar
  33. Werner E, Roe F, Bugnicourt A, Franklin MJ, Heydorn A, Molin S, Pitts B, Stewart PS (2004) Stratified growth in Pseudomonas aeruginosa biofilms. Appl Environ Microbiol 70:6188–6196CrossRefPubMedGoogle Scholar
  34. Whiteley M, Bangera MG, Bumgarner RE, Parsek MR, Teitzel GM, Lory S, Greenberg EP (2001) Gene expression in Pseudomonas aeruginosa biofilms. Nature 413:860–864CrossRefPubMedGoogle Scholar
  35. Wood TK, Peretti SW (1991) Effect of chemically-induced, cloned-gene expression on protein synthesis in E. coli. Biotechnol Bioeng 38:397–412CrossRefGoogle Scholar
  36. Yanisch-Perron C, Vieira J, Messing J (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–119PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Thomas K. Wood
    • 1
    Email author
  • Andrés F. González Barrios
    • 1
  • Moshe Herzberg
    • 1
  • Jintae Lee
    • 1
  1. 1.Departments of Chemical Engineering and BiologyTexas A & M UniversityCollege StationUSA

Personalised recommendations