Applied Microbiology and Biotechnology

, Volume 72, Issue 1, pp 155–162 | Cite as

Generation of aroma compounds from Ditaxis heterantha by Saccharomyces cerevisiae

  • L. Del Toro-Sánchez
  • S. Sánchez
  • M. A. Ortiz
  • S. Villanueva
  • E. Lugo-CervantesEmail author
Applied Microbial and Cell Physiology


Ditaxis heterantha, a plant of the Euphorbiaceae family, is growing wild in the semiarid regions of Mexico. The seed endosperm contains yellow pigments (carotenoids). By high-pressure liquid chromatography the total pigment (TP) was separated into seven fractions: two of them, heterathin (F4) and ditaxin (F5), characterized as apocarotenoids, represent 80% of TP. Both molecules have double bonds, which seem to be the target for degradation and aroma formation. In this work, TP, F4, and F5 were supplied to nine cultures able to degrade lutein. From these strains, only one (identified as Saccharomyces cerevisiae) was able to produce aromas from either TP or F4. Using TP as substrate, the produced aromas were 4-oxo-isophorone (1), isophorone (2), cinnamic aldehyde (6), 3-hydroxy-β-cyclocitral (7), safranal (8), geranyl (9), 3-oxo-α-ionone (10), 3-oxo-α-ionol (11), 3-oxo-7,8-dihydro-α-ionone (12), and eugenol (13). Of these aromas, only seven were produced from F4: (1), (2), (7), (8), (10), (11), and (12). In both cases, safranal was the main degradation product (30%). The enzymatic activity responsible for this effect was found in the cytosolic fraction and detected only when S. cerevisiae was grown in the presence of TP or F4.


Carotenoid Lutein Saffron Isophorone Total Pigment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research was financially supported by the Consejo Nacional de Ciencia y tecnología (CONACYT), Simorelos program (grant 1990305012), and Consejo estatal de ciencia y Tecnología de Jalisco (COECYTJAL, grant 1811). We thank Gabriela Maldonado-Robledo, Eduardo Rodríguez-Bustamante, Mirna Estarrón-Espinoza for their technical assistance in the realization of this work and Hector Escalona-Buendia and Peter Knauth for their help with the text.


  1. Belitz HD, Grosch W, Schieberle P (2004) Food chemistry, 3rd edn. Springer, Berlin Heidelberg New YorkGoogle Scholar
  2. Bosser A, Belin JM (1994) Synthesis of β-ionone in an aldehyde/xanthine oxidase/β-carotene system involving free radical formation. Biotechnol Prog 10:129–133CrossRefGoogle Scholar
  3. Bosser A, Paplorey E, Beling JM (1995) A simple way to (±)-dihydroactinidiolide from β-ionone related to enzymatic co-oxidation of β-carotene in aqueous solution. Biotechnol Prog 11:689–692CrossRefGoogle Scholar
  4. Crouzet JC, Kanasawud P (1992) Formation of volatile compounds by thermal degradation of carotenoids. Methods Enzymol 213:54–62CrossRefGoogle Scholar
  5. Deli J, Molnár P, Matus Z, Tóth G (2001) Carotenoid composition in the fruits of red paprika (Capsicum annuum var. Lycopersciforme rubrum) during ripening. Biosynthesis of carotenoids in red paprika. J Agric Food Chem 49(3):1517–1523CrossRefGoogle Scholar
  6. Enzell C (1985) Biodegradation of carotenoids: an important route to aroma compounds. Pure Appl Chem 57:693–700CrossRefGoogle Scholar
  7. Hui YH (1992) Volatile compounds of carotenoids. In: encyclopedia of food and technology, vol 2. Wiley, New York pp 955–964Google Scholar
  8. Jarén-Galán M, Mínguez-Mosquera I (1999) Quantitative and qualitative changes associated with heat treatments in the carotenoid content of paprika oleoresins. J Agric Food Chem 47(10):4379–4383CrossRefGoogle Scholar
  9. Knapp H, Straubinger M, Witte A, Winterhalter P (2000) Frontiers of flavour science. In: Schieberle P, Engel KH (eds) Proceedings of the 9th Weurman Flavour Symposium. Eigenverlag Deutsche Forschungsanstalt für Lebensmittelchemie, Garching, Germany, pp 440–444Google Scholar
  10. Kosteridis Y, Razungles A, Bertrand A, Baumes R (2000) Differentiation of the aromas of Merlot and Cabernet Sauvignon wines using sensory and instrumental analysis. J Agric Food Chem 48:5383–5388CrossRefGoogle Scholar
  11. Krasnobajew V, Helminger D (1982) Fermentation of fragrances: biotransformation of β-ionone by Lasiodiploida theobromae. Helv Chim Acta 65:1590–1595CrossRefGoogle Scholar
  12. Larena I, Salazar O, González V, Julián M, Rubio V (1999) Design of a primer for ribosomal DNA internal transcribed spacer with enhanced specificity for ascomycetes. J Biotechnol 75:187–191CrossRefGoogle Scholar
  13. Legler G, Müller-Platz CM, Mentges-Hettkamp M, Pflieger G, Jülich E (1985) On the chemical basis of the Lowry protein determination. Anal Biochem 150:278–287CrossRefGoogle Scholar
  14. Lott JA, Turner K (1975) Evaluation of Trinder's glucose oxidase method for measuring glucose in serum and urine. Clin Chem 21:1754–1760Google Scholar
  15. Lutz-Wahl S, Fischer P, Schmidt-Dannert C, Wohlleben W, Hauer B, Schmid RD (1998) Stereo and regioselective hydroxylation of α-ionone by Streptomyces strains. Appl Environ Microbiol 64:3878–3881Google Scholar
  16. Méndez-Robles MD (2004) Identificación y caracterización del pigmento obtenido a partir de las semillas de azafran de bolita (Ditaxis heterantha). Ph.D. thesis, Polytechnic National InstituteGoogle Scholar
  17. Méndez-Robles MD, Flores-Chavira C, Jaramillo-Flores ME, Orozco-Avila I, Lugo Cervantes E (2004) Chemical composition and current distribution of Azafran de Bolita (Ditaxis heterantha Zucc. Euphorbiaceae): a food pigment producing plant. Econ Bot 58:530–535CrossRefGoogle Scholar
  18. Méndez MD, Jaramillo ME, Lugo CE, Cardador A, Cerda CM, Lopez de la Mary F, Tamariz J, Permady H (2005) Isolation of two new antioxidant compounds C-26 and C-30 apocarotenoids from the seeds of Ditaxis heterantha. J Nat Prod (in press)Google Scholar
  19. Mikami Y, Fukunaga Y, Arita M, Kisaki T (1981) Microbial transformation of β-ionone and β-methylionone. Appl Environ Microbiol 41:610–617Google Scholar
  20. Pfander H, Schurtenberger H (1982) Biosynthesis of C20-carotenoids in Crocus sativus. Phytochemistry 21:1039–1042Google Scholar
  21. Rodriguez-Bustamante E, Maldonado-Robledo G, Ortiz MA, Díaz-Ávalos C, Sanchez S (2005) Bioconversion of lutein using a microbial mixture—maximizing the production of tobacco aroma compounds by manipulation of culture medium. Appl Microbiol Biotechnol 68:174–182Google Scholar
  22. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold spring HarborGoogle Scholar
  23. Sánchez-Contreras A, Jiménez M, Sanchez S (2000) Bioconversion of lutein to products with aroma. Appl Microbiol Biotechnol 54:528–534CrossRefGoogle Scholar
  24. Tai CY, Chen BH (2000) Analysis and stability of carotenoids in the flowers of daylily (Hemerocallis disticha) as affected by various treatments. J Agric Food Chem 48(12):5962–5968CrossRefGoogle Scholar
  25. Tarantilis P, Polissiow M (1997) Isolation and identification of the aroma components from saffron (Crocus sativa). J Agric Food Chem 45:459–462CrossRefGoogle Scholar
  26. Waché Y, Bosser DA, Mai LH, Belin JM (2002) Co-oxidation of β-carotene in biphasic media. J Mol Catal B Enzym 794:1–5Google Scholar
  27. Wahlberg I, Eklund AM (1998) Carotenoids, vol 3: biosynthesis and metabolism. In: Britton G, Liaaen-Jensen, Pfander H (eds) Birkhäuser Verlag, Basel, Switzerland pp 195–216Google Scholar
  28. Winterhalter P (1996) Carotenoid-derived aroma compounds: biogenetic and biotechnological aspects. In: Takeoka GR, Teranishi R, Williams PJ, Kobayasi A (eds) Biotechnology for improved foods and flavours (ACS Symposium Series 637). American Chemical Society, Washington DC, pp 120–123Google Scholar
  29. Winterhalter P, Rouseff RL (2002) Aroma compounds in tobacco. In: Carotenoid-derived aroma compounds. In: Wahlberg I (ed) American Chemical Society, Stockholm, Sweden, pp 131–143Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • L. Del Toro-Sánchez
    • 1
    • 2
  • S. Sánchez
    • 2
  • M. A. Ortiz
    • 2
  • S. Villanueva
    • 1
  • E. Lugo-Cervantes
    • 1
    Email author
  1. 1.Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de JaliscoGuadalajara JaliscoMexico
  2. 2.Departamento de Biología Molecular y Biotecnología del Instituto de Investigaciones BiomedicasUniversidad Nacional Autonoma de MexicoMexicoMexico

Personalised recommendations