Applied Microbiology and Biotechnology

, Volume 72, Issue 1, pp 41–51 | Cite as

High-level heterologous production and functional expression of the sec-dependent enterocin P from Enterococcus faecium P13 in Lactococcus lactis

  • Jorge Gutiérrez
  • Rasmus Larsen
  • Luis M. Cintas
  • Jan Kok
  • Pablo E. Hernández
Biotechnological Products and Process Engineering


Enterocin P (EntP), a sec-dependent bacteriocin from Enterococcus faecium P13, was produced by Lactococcus lactis. The EntP structural gene (entP) with or without the EntP immunity gene (entiP) was cloned in (1), plasmid pMG36c under control of the lactococcal constitutive promoter P32, (2) in plasmid pNG8048e under control of the inducible PnisA promoter, and (3) in the integration vector pINT29. Introduction of the recombinant vectors in L. lactis resulted in production of biologically active EntP in the supernatants of L. lactis subsp. lactis IL1403 and L. lactis subsp. cremoris NZ9000, and the coproduction of nisin A and EntP in L. lactis subsp. lactis DPC5598. The level of production of EntP, detected and quantified by specific anti-EntP antibodies and a noncompetitive indirect enzyme-linked immunosorbent assay, by the recombinant L. lactis strains depended on the host strain, the expression vector, and the presence of the entiP gene in the constructs of the recombinant L. lactis strains. The highest amount of EntP was produced with derivatives containing entP and entiP, for both L. lactis IL1403 and L. lactis NZ9000. These derivatives produced up to five- to six-fold more EntP than E. faecium P13. Mass spectrometry analysis revealed that EntP purified from L. lactis IL1403 (pJP214) has a molecular mass identical to that purified from E. faecium P13, suggesting that the synthesis, processing, and secretion of EntP progresses efficiently in recombinant L. lactis hosts.


Lactis Lactic Acid Bacterium Heterologous Production General Secretory Pathway Lactis IL1403 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors wish to express their gratitude to Prof. R. P. Ross (Teagasc Dairy Products Research Centre, Moorepark, Fermoy, Co. Cork, Ireland) for providing the strain L. lactis DPC5598. This work was partially supported by grants 07G/0026/2000 and S-0505/AGR/0265 from the Comunidad de Madrid, and AGL2000-0707 and AGL2003-01508 from the Ministerio de Educación y Cultura, Spain. J. Gutiérrez is the recipient of a fellowship from the Ministerio de Ciencia y Tecnología (MCYT), Spain.


  1. Axelsson L, Katla T, Bjornslett M, Eijsink VGH, Holck A (1998) A system for heterologous expression of bacteriocins in Lactobacillus sake. FEMS Microbiol Lett 168:137–143CrossRefGoogle Scholar
  2. Biet F, Berjeaud JM, Worobo RW, Cenatempo Y, Fremaux C (1998) Heterologous expression of the bacteriocin mesentericin Y105 using the dedicated transport system and the general secretion pathway. Microbiology 144:2845–2854Google Scholar
  3. Birnboim HC (1983) A rapid alkaline extraction method for the isolation of plasmid DNA. Methods Enzymol 100:243–255CrossRefGoogle Scholar
  4. Casaus P, Nilsen T, Cintas LM, Nes IF, Hernández PE, Holo H (1997) Enterocin B, a new bacteriocin from Enterococcus faecium T136 which can act synergistically with enteriocin A. Microbiology 143:2287–2294Google Scholar
  5. Chikindas ML, Venema K, Ledeboer AM, Venema G, Kok J (1995) Expression of lactococcin A and pediocin PA-1 in heterologous hosts. Lett Appl Microbiol 21:183–189CrossRefGoogle Scholar
  6. Chopin MC, Chopin A, Moillo-Bott A, Langella P (1984) Two plasmid-determined restriction and modification systems in Streptococcus lactis. Plasmid 11:260–263CrossRefGoogle Scholar
  7. Cintas LM (1995) Ph.D. thesis. Universidad Autónoma de Madrid. SpainGoogle Scholar
  8. Cintas LM, Casaus P, Håvarstein LS, Hernández PE, Nes IF (1997) Biochemical and genetic characterization of enterocin P, a novel sec-dependent bacteriocin from Enterococcus faecium P13 with a broad antimicrobial spectrum. Appl Environ Microbiol 63:4321–4330Google Scholar
  9. Cintas LM, Casaus P, Holo H, Hernández PE, Nes IF, Håvarstein LS (1998) Enterocins L50A and L50B, two novel bacteriocins from Enterococcus faecium L50, are related to staphylococcal hemolysins. J Bacteriol 180:1988–1994Google Scholar
  10. Cintas LM, Casaus P, Herranz C, Håvarstein LS, Holo H, Hernández PE, Nes IF (2000) Biochemical and genetic evidence that Enterococcus faecium L50 produces enterocins L50A and L50B, the sec-dependent enterocin P, and a novel bacteriocin secreted without an N-terminal extension termed enterocin Q. J Bacteriol 182:6806–6814CrossRefGoogle Scholar
  11. Cintas LM, Casaus P, Herranz C, Nes IF, Hernández PE (2001) Review: bacteriocins of lactic acid bacteria. Food Sci Technol Int 7:281–305CrossRefGoogle Scholar
  12. Cleveland J, Montville TJ, Nes IF, Chikindas ML (2001) Bacteriocins: safe, natural antimicrobials for food preservation. Int J Food Microbiol 71:1–20CrossRefGoogle Scholar
  13. De Ruyter PGGA, Kuipers OP, de Vos WM (1996) Controlled gene expression systems for Lactococcus lactis using the food-grade inducer nisin. Appl Environ Microbiol 62:3662–3667Google Scholar
  14. De Vos WM (1987) Gene cloning and expression in lactic streptococci. FEMS Microbiol Rev 46:281–295Google Scholar
  15. De Vos WM, Mulders JWM, Siezen RJ, Hugenholtz J, Kuipers OP (1993) Properties of nisin Z and distribution of its gene, nisZ, in Lactococcus lactis. Appl Environ Microbiol 59:213–218Google Scholar
  16. Dieye Y, Hoekman AJW, Clier F, Juillard V, Boot HJ, Piard JC (2003) Ability of Lactococcus lactis to export viral capside antigens: a crucial step for development of live vaccines. Appl Environ Microbiol 69:7281–7288CrossRefGoogle Scholar
  17. Eaton TJ, Gasson MJ (2001) Molecular screening of Enterococcus virulence determinants and potential for genetic exchange between food and medical isolates. Appl Environ Microbiol 67:1628–1635CrossRefGoogle Scholar
  18. Eijsink VGH, Axelsson L, Diep DB, Håvarstein LS, Holo H, Nes IF (2002) Production of class II bacteriocins by lactic acid bacteria; an example of biological warfare and communication. Antonie Van Leeuwenhoek 81:639–654CrossRefGoogle Scholar
  19. Faye T, Langsrud T, Nes IF, Holo H (2000) Biochemical and genetic characterization of propionicin T1, a new bacteriocin from Propionibacterium thoenii. Appl Environ Microbiol 66:4230–4236CrossRefGoogle Scholar
  20. Fimland G, Eijsink VGH, Nissen-Meyer J (2002) Comparative studies of immunity proteins of pediocin-like bacteriocins. Microbiology 148:3661–3670Google Scholar
  21. Franz CMAP, Holzapfel WH, Stiles ME (1999a) Enterococci at the crossroads of food safety? Int J Food Microbiol 47:1–24CrossRefGoogle Scholar
  22. Franz CMAP, Worobo RW, Quadri LEN, Schillinger U, Holzapfel WH, Vederas JC, Stiles ME (1999b) Atypical genetic locus associated with constitutive production of enterocin B by Enterococcus faecium BFE 900. Appl Environ Microbiol 65:2170–2178Google Scholar
  23. Franz CMAP, Muscholl-Silberhorn AB, Yousif NMK, Vancanneyt M, Swings J, Holzapfel WM (2001) Incidence of virulence factors and antibiotic resistance among enterococci isolated from food. Appl Environ Microbiol 67:4385–4389CrossRefGoogle Scholar
  24. Gasson MJ (1983) Plasmid complements of Streptococcus lactis NCDO 712 and other lactic Streptococci after protoplast-induced curing. J Bacteriol 154:1–9Google Scholar
  25. Gutiérrez J, Criado R, Citti R, Martín M, Herranz C, Fernández MF, Cintas LM, Hernández PE (2004) Performance and applications of polyclonal antipeptide antibodies specific for the enterococcal bacteriocin enterocin P. J Agric Food Chem 52:2247–2255CrossRefGoogle Scholar
  26. Gutiérrez J, Criado R, Citti R, Martín M, Herranz C, Nes IF, Cintas LM, Hernández PE (2005) Cloning, production and functional expression of enterocin P, a sec-dependent bacteriocin produced by Enterococcus faecium P13, in Escherichia coli. Int J Food Microbiol 103:239–250CrossRefGoogle Scholar
  27. Håvarstein LS, Diep DB, Nes IF (1995) A family of bacteriocin ABC transporters carry out proteolytic processing of their substrates concomitant with export. Mol Microbiol 16:229–240CrossRefGoogle Scholar
  28. Herranz C, Chen Y, Cintas LM, Hernández PE, Montville TJ, Chikindas ML (2001a) Enterocin P selectively dissipates the membrane potential of Enterococcus faecium T136. Appl Environ Microbiol 67:1689–1692CrossRefGoogle Scholar
  29. Herranz C, Cintas LM, Hernández PE, Moll GN, Driessen AJM (2001b) Enterocin P causes potassium ion efflux from Enterococcus faecium T136 cells. Antimicrob Agents Chemother 45:901–904CrossRefGoogle Scholar
  30. Herranz C, Driessen AJM (2005) Sec-mediated secretion of bacteriocin enterocin P by Lactococcus lactis. Appl Environ Microbiol 71:1959–1963CrossRefGoogle Scholar
  31. Holo H, Nes IF (1989) High-frequency transformation, by electroporation, of Lactococcus lactis subsp. cremoris grown with glycine in osmotically stabilized media. Appl Environ Microbiol 55:3119–3123Google Scholar
  32. Horn N, Martínez MI, Martínez JM, Hernández PE, Gasson MJ, Rodríguez JM, Dodd HM (1998) Production of pediocin PA-1 by Lactococcus lactis using the lactococcin A secretory apparatus. Appl Environ Microbiol 64:818–823Google Scholar
  33. Horn N, Martínez MI, Martínez JM, Hernández PE, Gasson MJ, Rodríguez JM, Dodd HM (1999) Enhanced production of pediocin PA-1 and coproduction of nisin and pediocin PA-1 by Lactococcus lactis. Appl Environ Microbiol 65:4443–4450Google Scholar
  34. Kawamoto S, Shima S, Sato R, Eguchi T, Ohmomo S, Sameshima T (2002) Biochemical and genetic characterization of mundticin KS, an antilisterial peptide produced by Enterococcus mundtii NFRI 7973. Appl Environ Microbiol 68:3830–3840CrossRefGoogle Scholar
  35. Kok J, Jos MB, van der Vossen M, Venema G (1984) Construction of plasmid cloning vectors for lactic streptococci which also replicate in Bacillus subtilis and Escherichia coli. Appl Environ Microbiol 48:726–731Google Scholar
  36. Kuipers OP, de Ruyter PGGA, Kleerebezem M, de Vos WM (1998) Quorum sensing-controlled gene expression in lactic acid bacteria. J Biotechnol 64:15–21CrossRefGoogle Scholar
  37. Leenhouts K, Bolhuis A, Venema G, Kok J (1998) Construction of a food-grade multicopy integration system for Lactococcus lactis. Appl Microbiol Biotechnol 49:417–423CrossRefGoogle Scholar
  38. Leer JR, van der Vossen JMBM, van Gieze M, van Noor JM, Pouwels PH (1995) Genetic analysis of acidocin B, a novel bacteriocin produced by Lactobacillus acidophilus. Microbiology 141:1629–1635CrossRefGoogle Scholar
  39. Martínez B, Fernández M, Suárez JE, Rodríguez A (1999) Synthesis of lactococcin 972, a bacteriocin produced by Lactococcus lactis IPLA972, depends on the expression of a plasmid-encoded bicistronic operon. Microbiology 145:3155–3161Google Scholar
  40. Martínez JM, Kok J, Sanders JW, Hernández PE (2000) Heterologous co-production of enterocin A and pediocin PA-1 by Lactococcus lactis: detection by specific peptide-directed antibodies. Appl Environ Microbiol 66:3543–3549CrossRefGoogle Scholar
  41. McCormick JK, Worobo RW, Stiles ME (1996) Expression of the antimicrobial peptide carnobacteriocin B2 by a signal-peptide dependent general secretory pathway. Appl Environ Microbiol 62:4095–4099Google Scholar
  42. McCormick JK, Poon A, Sailer M, Gao Y, Roy KL, McMullen LM, Vederas JC, Stiles ME, van Belkum MJ (1998) Genetic characterization and heterologous expression of brochocin-C, an antibotulinal two-peptide bacteriocin produced by Brochothrix campestris ATCC 43754. Appl Environ Microbiol 64:4757–4766Google Scholar
  43. McCormick JK, Klaenhammer TR, Stiles ME (1999) Colicin V can be produced by lactic acid bacteria. Lett Appl Microbiol 29:37–41CrossRefGoogle Scholar
  44. Morisset D, Frere J (2002) Heterologous expression of bacteriocins using the mesentericin Y105 dedicated transport system by Leuconostoc mesenteroides. Biochimie 84:569–576CrossRefGoogle Scholar
  45. Nes IF, Holo H (2000) Class II antimicrobial peptides from lactic acid bacteria. Biopolymers 55:50–61CrossRefGoogle Scholar
  46. Nilsen T, Nes IF, Holo H (2003) Enterolysin A, a cell-wall degrading bacteriocin from Enterococcus faecalis LMG 2333. Appl Environ Microbiol 69:2975–2984CrossRefGoogle Scholar
  47. O’Sullivan L, Ross RP, Hill C (2002) Potential of bacteriocin-producing lactic acid bacteria for improvements in food safety and quality. Biochimie 84:593–604CrossRefGoogle Scholar
  48. Rodríguez JM, Cintas LM, Casaus P, Horn N, Dodd HM, Hernández PE, Gasson MJ (1995) Isolation of nisin-producing Lactococcus lactis strains from dry fermented sausages. J Appl Bacteriol 78:109–115Google Scholar
  49. Sánchez-Hidalgo M, Maqueda M, Gálvez A, Abriouel H, Valdivia E, Martínez-Bueno M (2003) The genes coding for enterocin EJ97 production by Enterococcus faecalis EJ97 are located on a conjugative plasmid. Appl Environ Microbiol 69:1633–1641CrossRefGoogle Scholar
  50. Schägger H, Von Jagow G (1987) Tricine-sodium dodecylsulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range 1 to 100 KDa. Anal Biochem 166:368–379CrossRefGoogle Scholar
  51. Shankar N, Baghdayan AS, Gilmore MS (2002) Modulation of virulence within a pathogenicity island in vancomycin-resistant Enterococcus faecalis. Nature 417:746–750CrossRefGoogle Scholar
  52. Suárez AM, Rodríguez JM, Hernández PE, Azcona JI (1996) Generation of polyclonal antibodies against nisin: immunization strategies and immunoassay development. Appl Environ Microbiol 62:2117–2121Google Scholar
  53. Tomita H, Fujimoto S, Tanimoto K, Ike Y (1996) Cloning and characterization of the bacteriocin 31 determinant encoded on the Enterococcus faecalis pheromone-response conjugative plasmid pY117. J Bacteriol 178:3585–3593Google Scholar
  54. Trotter M, Ross RP, Fitzgerald GF, Coffey A (2002) Lactococcus lactis DPC5598, a plasmid-free derivative of a commercial starter, provides a valuable alternative host for culture improvement studies. J Appl Microbiol 93:134–143CrossRefGoogle Scholar
  55. Van Belkum MJ, Worobo RW, Stiles ME (1997) Double-glycine-type leader peptides direct secretion of bacteriocins by ABC transporters: colicin V secretion in Lactococcus lactis. Mol Microbiol 23:1293–1301CrossRefGoogle Scholar
  56. Van de Guchte M, van der Vossen JMBM, Kok J, Venema G (1989) Construction of a lactococcal expression vector: expression of hen egg white lysozyme in Lactococcus lactis subsp. lactis. Appl Environ Microbiol 55:224–228Google Scholar
  57. Van der Vossen JMBM, van Herwijnen MHM, Leer RJ, ten Brink B, Pouwels PH, Huis in´t Veld JHJ (1994) Production of acidocin B, a bacteriocin of Lactobacillus acidophilus M46 is a plasmid encoded trait: plasmid curing, genetic marking by in vivo plasmid integration, and gene transfer. FEMS Microbiol Lett 116:333–340CrossRefGoogle Scholar
  58. Van Wely KHM, Swaving J, Freudl R, Driessen AJM (2001) Translocation of proteins across the cell envelope of Gram-positive bacteria. FEMS Microbiol Rev 25:437–454Google Scholar
  59. Venea K, Haverkort RE, Abee T, Haandrikman AJ, Leenhouts KJ, de Leij L, Venema G, Kok J (1994) Mode of action of LciA, the lactococcin A immunity protein. Mol Microbiol 14:521–532CrossRefGoogle Scholar
  60. Venema K, Kok J, Marugg JD, Toonen MY, Ledeboer AM, Venema G, Chikindas ML (1995) Functional analysis of the pediocin operon of Pediococcus acidilactici PAC1.0: PedB is the immunity protein and PedD is the precursor processing enzyme. Mol Microbiol 17:515–522CrossRefGoogle Scholar
  61. Worobo RW, van Belkum MJ, Sailer M, Roy KL, Vederas JC, Stiles ME (1995) A signal peptide secretion-dependent bacteriocin from Carnobacterium divergens. J Bacteriol 177:3143–3149Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Jorge Gutiérrez
    • 1
  • Rasmus Larsen
    • 2
  • Luis M. Cintas
    • 1
  • Jan Kok
    • 2
  • Pablo E. Hernández
    • 1
  1. 1.Departamento de Nutrición, Bromatología y Tecnología de los Alimentos, Facultad de VeterinariaUniversidad Complutense de MadridMadridSpain
  2. 2.Department of Genetics, Groningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenAA HarenThe Netherlands

Personalised recommendations