Flavin-dependent halogenases involved in secondary metabolism in bacteria

  • Karl-Heinz van Pée
  • Eugenio P. Patallo


The understanding of biological halogenation has increased during the last few years. While haloperoxidases were the only halogenating enzymes known until 1997, it is now clear that haloperoxidases are hardly, if at all, involved in biosynthesis of more complex halogenated compounds in microorganisms. A novel type of halogenating enzymes, flavin-dependent halogenases, has been identified as a major player in the introduction of chloride and bromide into activated organic molecules. Flavin-dependent halogenases require the activity of a flavin reductase for the production of reduced flavin, required by the actual halogenase. A number of flavin-dependent tryptophan halogenases have been investigated in some detail, and the first three-dimensional structure of a member of this enzyme subfamily, tryptophan 7-halogenase, has been elucidated. This structure suggests a mechanism involving the formation of hypohalous acid, which is used inside the enzyme for regioselective halogenation of the respective substrate. The introduction of halogen atoms into non-activated alkyl groups is catalysed by non-heme FeII α-ketoglutarate- and O2-dependent halogenases. Examples for the use of flavin-dependent halogenases for the formation of novel halogenated compounds in in vitro and in vivo reactions promise a bright future for the application of biological halogenation reactions.


  1. Bister B, Bischoff D, Nicholson GJ, Stockert S, Wink J, Brunati C, Donadio S, Pelzer S, Wohlleben W, Süssmuth RD (2003) Bromobalhimycin and chlorobromobalhimycins—illuminating the potential of halogenases in glycopeptide antibiotic biosyntheses. Chembiochem 4:658–662CrossRefGoogle Scholar
  2. Chang Z, Flatt P, Gerwick WH, Nguyen V-A, Willis CL, Sherman DH (2002) The barbamide biosynthetic gene cluster: a novel cyanobacterial system of mixed polyketide synthase (PKS)–non-ribosomal peptide synthetase (NRPS) origin involving an unusual trichloroleucyl starter unit. Gene 296:235–247CrossRefGoogle Scholar
  3. Dairi T, Nakano T, Aisaka K, Katsumata R, Hasegawa M (1995) Cloning and nucleotide sequence of the gene responsible for chlorination of tetracycline. Biosci Biotechnol Biochem 59:1099–1106CrossRefGoogle Scholar
  4. Doerschuk AP, McCormick JRD, Goodman JJ, Szumski SA, Growich JA, Miller PA, Bitler BA, Jensen ER, Matrishin M, Petty MA, Phelps AS (1959) Biosynthesis of tetracyclines. I. The halide metabolism of Streptomyces aureofaciens mutants. The preparation and characterization of tetracycline, 7-chloro36-tetracycline and 7-bromotetracycline. J Am Chem Soc 81:3069–3075CrossRefGoogle Scholar
  5. Dong C, Kotzsch A, Dorward M, van Pée K-H, Naismith JH (2004a) Crystallization and x-ray diffraction of a halogenating enzyme, tryptophan 7-halogenase, from Pseudomonas fluorescens. Acta Crystallogr D Biol Crystallogr 60:1438–1440CrossRefGoogle Scholar
  6. Dong C, Huang F, Deng H, Schaffrath C, Spencer JB, O’Hagan D, Naismith JH (2004b) Crystal structure and mechanism of a bacterial fluorinating enzyme. Nature 427:561–565CrossRefGoogle Scholar
  7. Dong C, Flecks F, Unversucht S, Haupt C, van Pée K-H, Naismith JH (2005) Tryptophan 7-halogenase (PrnA) structure suggests a mechanism for regioselective chlorination. Science 306:2216–2219CrossRefGoogle Scholar
  8. Dorrestein PC, Yeh E, Garncau-Tsodikova S, Kelleher NL, Walsh CT (2005) Dichlorination of pyrrolyl-S-carrier protein by FADH2-dependent halogenase PltA during pyoluteorin biosynthesis. Proc Natl Acad Sci USA 102:13843–13848CrossRefGoogle Scholar
  9. Eustaquio AS, Gust B, Luft T, Li S-M, Chater KF, Heide L (2003) Clorobiocin biosynthesis in Streptomyces: identification of the halogenase and generation of structural analogs. Chem Biol 10:279–288CrossRefGoogle Scholar
  10. Eustaquio AS, Gust B, Li S-M, Pelzer S, Wohlleben W, Chater KF, Heide L (2004) Production of 8’-halogenated and 8’-unsubstituted novobiocin derivatives in genetically engineered Streptomyces coelicolor strains. Chem Biol 11:1561–1572CrossRefGoogle Scholar
  11. Galan B, Diaz E, Prieto MA, Garcia JL (2000) Functional analysis of the small component of the 4-hydroxyphenylacetate 3-monooxygenase of Escherichia coli W: a prototype of a new flavin: NAD(P)H reductase subfamily. J Bacteriol 182:627–636CrossRefGoogle Scholar
  12. Gribble GW (2003) The diversity of naturally produced organohalogens. In: Gribble GW (ed) Natural production of organohalogen compounds. Springer, Berlin Heidelberg New York, pp 1–15CrossRefGoogle Scholar
  13. Hammer PE, Hill, DS, Lam ST, van Pée K-H, Ligon JM (1997) Four genes from Pseudomonas fluorescens that encode the biosynthesis of pyrrolnitrin. Appl Environ Microbiol 63:2147–2154Google Scholar
  14. Hohaus K, Altmann A, Burd W, Fischer I, Hammer PE, Hill DS, Ligon JM, van Pée K-H (1997) NADH-dependent halogenases are more likely to be involved in halometabolite biosynthesis than haloperoxidases. Angew Chem Int Ed Engl 36:2012–2013CrossRefGoogle Scholar
  15. Hölzer M, Burd W, Reiβig H-U, van Pée K-H (2001) Substrate specificity and regioselectivity of tryptophan 7-halogenase from Pseudomonas flourescens BL915. Adv Syn Catal 343:591–595CrossRefGoogle Scholar
  16. Jiménez JI, Scheuer PJ (2001) New lipopeptides from the Caribbean cyanobacterium Lyngbya majuscula. J Nat Prod 64:200–203CrossRefGoogle Scholar
  17. Keller S, Wage T, Hohaus K, Hölzer M, Eichhorn E, van Pée K-H (2000) Purification and partial characterization of tryptophan 7-halogenase (PrnA) from Pseudomonas fluorescens. Angew Chem Int Ed Engl 39:2300–2302CrossRefGoogle Scholar
  18. Kendall EC (1919) Isolation of the iodine compound which occurs in the thyroid. J Biol Chem 39:125–147Google Scholar
  19. Kirchner U, Westphal AH, Müller R, van Berkel WJH (2003) Phenol hydroxylase from Bacillus thermoglucosidans A7: a two-protein-component monooxygenase with a dual role for FAD. J Biol Chem 278:47545–47553CrossRefGoogle Scholar
  20. Kling E, Schmid C, Unversucht S, Wage T, Zehner S, van Pée K-H (2005) Enzymatic incorporation of halogen atoms into natural compounds. In: Wohlleben W, Spellig T, Müller-Tiemann B (eds) Biocombinatorial approaches for drug finding. Springer, Berlin Heidelberg New York, pp 165–194CrossRefGoogle Scholar
  21. Louie TM, Webster CM, Xun L (2002) Genetic and biochemical characterization of 2,4,6-trichlorophenol degradation pathway in Ralstonia eutropha JMP134. J Bacteriol 184:3492–3500CrossRefGoogle Scholar
  22. Louie TM, Xie XS, Xun L (2003) Coordinated production and utilization of FADH2 by NAD(P)H-flavin oxidoreductase and 4-hydroxyphenylacetate 3-monooxygenase. Biochemistry 42:7509–7517CrossRefGoogle Scholar
  23. Low JC, Tu SC (2003) Energy transfer evidence for in vitro and in vivo complexes of Vibrio harveyi flavin reductase P and luciferase. Photochem Photobiol 77:446–452CrossRefGoogle Scholar
  24. Morris HR, Taylor GW, Masento MS, Jermyn KA, Kay RR (1987) Chemical structure of the morphogen differentiation inducing factor from Dictyostelium discoideum. Nature 328:811–814CrossRefGoogle Scholar
  25. Morton GO, Lancaster JE, Van Lear GE, Fulmor W, Meyer WE (1969) The structure of nucleocidin. III. A new structure. J Am Chem Soc 91:1535–1537CrossRefGoogle Scholar
  26. Oelrichs PB, McEwan T (1961) Isolation of the toxic principle in Acacia georginae. Nature 190:808–809CrossRefGoogle Scholar
  27. O'Hagan D, Schaffrath C, Cobb SL, Hamilton JTG, Murphy CD (2002) Biosynthesis of an organofluorine molecule. Nature 416:279CrossRefGoogle Scholar
  28. Otsuka M, Ichinose K, Fujii I, Ebizuka Y (2004) Cloning, sequencing, and functional analysis of an iterative type I polyketide synthase gene cluster for biosynthesis of the antitumor chlorinated polyenone neocarzilin in “Streptomyces carzinostaticus”. Antimicrob Agents Chemother 48:3468–3476CrossRefGoogle Scholar
  29. Otto K, Hofstetter K, Röthlisberger M, Witholt B, Schmid A (2004) Biochemical characterization of StyAB from Pseudomonas sp. strain VLB120 as a two-component flavin-diffusible monooxygenase. J Bacteriol 186:5292–5302CrossRefGoogle Scholar
  30. Paulsen IT, Press CM, Ravel J, Kobayashi DY, Myers GSA, Mavrodi DV, DeBoy RT, Seshadri R, Ren Q, Madupu R, Dodson RJ, Durkin AS, Brinkac LM, Daugherty SC, Sullivan SA, Rosovitz MJ, Gwinn ML, Zhou L, Schneider DJ, Cartinhour SW, Nelson WC, Weidman J, Watkins K, Tran K, Khouri H, Pierson EA, Pierson III LS, Thomashaw LS, Loper JE (2005) Complete genome sequence of the plant commensal Pseudomonas fluorescens Pf-5. Nat Biotechnol 23:873–878CrossRefGoogle Scholar
  31. Piraee M, Vining LC (2002) Use of degenerate primers and touch-down PCR to amplify a halogenase gene fragment from Streptomyces venezuelae ISP5230. J Ind Microbiol Biotechnol 29:1–5CrossRefGoogle Scholar
  32. Piraee M, White R, Vining LC (2004) Biosynthesis of the dichloroacetyl component of chloramphenicol in Streptomyces venezuelae ISP5230: genes required for halogenation. Microbiology 150:85–94CrossRefGoogle Scholar
  33. Puk O, Huber P, Bischoff D, Recktenwald J, Jung G, Süßmuth RD, van Pée K-H, Wohlleben W, Pelzer S (2002) Glycopeptide biosynthesis in Amycolatopsis mediterranei DSM5908: function of a halogenase and a haloperoxidase/perhydrolase. Chem Biol 9:225–235CrossRefGoogle Scholar
  34. Puk O, Bischoff D, Kittel C, Pelzer S, Weist S, Stegmann E, Süssmuth RD, Wohlleben W (2004) Biosynthesis of chloro-β-hydroxytyrosine, a nonproteinogenic amino acid of the peptidic backbone of glycopeptide antibiotics. J Bacteriol 186:6093–6100CrossRefGoogle Scholar
  35. Ridley CP, Bergquist PR, Harper MK, Faulkner DJ, Hooper JNA, Haygood MG (2005) Speciation and biosynthetic variation in four dictyoceratid sponges and their cyanobacterial symbiont, Oscillatoria spongeliae. Chem Biol 12:397–406CrossRefGoogle Scholar
  36. Sanada M, Miyano T, Iwadare S, Williamson JM, Arison BH, Smith JL, Douglas AW, Liesch JM, Inamine E (1986) Biosynthesis of fluorothreonine and fluoroacetic acid by the thienamycin producer Streptomyces cattleya. J Antibiot 39:259–265Google Scholar
  37. Sanchez C, Butovich IA, Brana AF, Rohr J, Mendez C, Salas JA (2002). The biosynthetic gene cluster for the antitumor rebeccamycin. Characterization and generation of indolocarbazole derivatives. Chem Biol 9:519–531CrossRefGoogle Scholar
  38. Sanchez C, Zhu L, Brana AF, Salas AP, Rohr J, Mendez C, Salas JA (2005) Combinatorial biosynthesis of antitumor indolocarbazole compounds. Proc Natl Acad Sci U S A 102:461–466CrossRefGoogle Scholar
  39. Shaw PD, Hager LP (1959) Biological chlorination. IV. Peroxidative nature of enzymatic chlorination. J Am Chem Soc 81:6527–6528CrossRefGoogle Scholar
  40. Smith GG (1958) Effect of halogen on the chloramphenicol fermentation. J Bacteriol 75:577–583Google Scholar
  41. Sundaramoorthy M, Terner J, Poulos TL (1998) Stereochemistry of chloroperoxidase active site: crystallographic and molecular-modeling studies. Chem Biol 5:461–473CrossRefGoogle Scholar
  42. Trimurtulu G, Ohtani I, Patterson GML, Moore RE, Corbett TH, Valeriote FA, Demchik L (1994) Total structures of cryptophycins, potent antitumor depsipeptides from the blue-green alga Nostoc sp. strain GSV 224. J Am Chem Soc 116:4729–4737CrossRefGoogle Scholar
  43. Unson MD, Rose CB, Faulkner DJ, Brinen LS, Steiner JR, Clardy J (1993) New polychlorinated amino acid derivatives from the marine sponge Dysidea herbacea. J Org Chem 58:6336–6343CrossRefGoogle Scholar
  44. Unversucht S, Hollmann F, Schmid A, van Pée K-H (2005) FADH2-dependence of tryptophan 7-halogenase. Adv Synth Catal 347:1163–1167CrossRefGoogle Scholar
  45. Vaillancourt FH, Yin J, Walsh CT (2005a) SyrB in syringomycin E biosynthesis is a nonheme FeII α-ketoglutarate- and O2-dependent halogenase. Proc Natl Acad Sci U S A 102:10111–10116CrossRefGoogle Scholar
  46. Vaillancourt FH, Yeh E, Vosburg DA, O’Connor SE, Walsh CT (2005b) Cryptic chlorination by a non-haem iron enzyme during cyclopropyl amino acid biosynthesis. Nature 436:1191–1194CrossRefGoogle Scholar
  47. van Pée K-H (1996) Biosynthesis of halogenated metabolites by bacteria. Annu Rev Microbiol 50:375–399CrossRefGoogle Scholar
  48. van Pée K-H, Unversucht S (2003) Biological dehalogenation and halogenation reactions. Chemosphere 52:299–312CrossRefGoogle Scholar
  49. van Pée K-H, Zehner S (2003) Enzymology and molecular genetics of biological halogenation. In: Gribble G (ed) Natural production of organohalogen compounds. Springer, Berlin Heidelberg New York, pp 171–199CrossRefGoogle Scholar
  50. van Pée K-H, Salcher O, Fischer P, Bokel M, Lingens F (1983) The biosynthesis of brominated pyrrolnitrin derivatives by Pseudomonas aureofaciens. J Antibiot 36:1735–1742Google Scholar
  51. Walsh CT (2003) Antibiotics: actions, origins, resistance. ASM Press, WashingtonGoogle Scholar
  52. Williams DH, Bardsley B (1999) The vancomycin group of antibiotics and the fight against resistant bacteria. Angew Chem Int Ed 38:1172–1193CrossRefGoogle Scholar
  53. Wever R, Hemrika W (1998) Vanadium enzymes. In: Nriagu JO (ed) Vanadium in the environment. Part 1: chemistry and biochemistry. Wiley, New York, pp 285–305Google Scholar
  54. Wu W, Chen Y, d’Avignon A, Hazen SL (1999) 3-Bromotyrosine and 3,5-dibromotyrosine are major products of protein oxidation by eosinophil peroxidase: potential markers for eosinophil-dependent tissue injury in vivo. Biochemistry 38:3538–3548CrossRefGoogle Scholar
  55. Wynands I, van Pée K-H (2004) A novel halogenase gene from the pentachloropseudilin producer Actinoplanes sp. ATCC 33002 and detection of in vitro halogenase activity. FEMS Microbiol Lett 237:363–367Google Scholar
  56. Yeh E, Garneau S, Walsh CT (2005) Robust in vitro activity of RebF and RebH, a two-component reductase/halogenase, generating 7-chlorotryptophan during rebeccamycin biosynthesis. Proc Natl Acad Sci U S A 102:3960–3965CrossRefGoogle Scholar
  57. Zehner S, Bister B, Süssmuth RD, Méndez C, Salas JA, van Pée K-H (2005) A regioselective tryptophan 5-halogenase is involved in pyrroindomycin biosynthesis in Streptomyces rugosporus LL-42D005. Chem Biol 12:445–452CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Karl-Heinz van Pée
    • 1
  • Eugenio P. Patallo
    • 1
  1. 1.Institut für BiochemieDresdenGermany

Personalised recommendations