Advertisement

Applied Microbiology and Biotechnology

, Volume 69, Issue 6, pp 607–614 | Cite as

Autodisplay: efficient bacterial surface display of recombinant proteins

  • Joachim Jose
Mini-Review

Abstract

To display a protein or peptide with a distinct function at the surface of a living bacterial cell is a challenging exercise with constantly increasing impact in many areas of biochemistry and biotechnology. Among other systems in Gram-negative bacteria, the Autodisplay system provides striking advantages when used to express a recombinant protein at the surface of Escherichia coli or related bacteria. The Autodisplay system has been developed on the basis of and by exploiting the natural secretion mechanism of the AIDA-I autotransporter protein. It offers the expression of more than 105 recombinant molecules per single cell, permits the multimerization of subunits expressed from monomeric genes at the cell surface, and allows, after transport of an apoprotein to the cell surface, the incorporation of an inorganic prosthetic group without disturbing cell integrity or cell viability. Moreover, whole cells displaying recombinant proteins by Autodisplay can be subjected to high-throughput screening (HTS) methods such as ELISA or FACS, thus enabling the screening of surface display libraries and providing access to directed evolution of the recombinant protein displayed at the cell surface. In this review, the application of the Autodisplay system for the surface display of enzymes, enzyme inhibitors, epitopes, antigens, protein and peptide libraries is summarised and the perspectives of the system are discussed.

Keywords

Vaccine Strain Surface Display Secretion Mechanism Live Vaccine Strain Cell Biocatalyst 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

I thank all individuals who contributed to our work on Autodisplay and, in particular, I thank Ruth Maas for critical reading of the manuscript.

References

  1. Becker S, Theile S, Heppeler N, Michalczyk A, Wentzel A, Wilhelm S, Jaeger KE, Kolmar H (2005) A generic system for the Escherichia coli cell-surface display of lipolytic enzymes. FEBS Lett 579:1177–1182CrossRefGoogle Scholar
  2. Benhar I (2001) Biotechnological applications of phage and cell display. Biotechnol Adv 19:1–33CrossRefGoogle Scholar
  3. Benz I, Schmidt MA (1989) Cloning and expression of an adhesin (AIDA-I) involved in diffuse adherence of enteropathogenic Escherichia coli. Infect Immun 57:1506–1511Google Scholar
  4. Bessette PH, Rice JJ, Daugherty PS (2004) Rapid isolation of high-affinity protein binding peptides using bacterial display. Protein Eng Des Sel 17:731–739CrossRefGoogle Scholar
  5. Bornscheuer UT (2002) Microbial carboxyl esterases: classification, properties and application in biocatalysis. FEMS Microbiol Rev 26:73–81CrossRefGoogle Scholar
  6. Charbit A, Boulain JC, Ryter A, Hofnung M (1986) Probing the topology of a bacterial membrane protein by genetic insertion of a foreign epitope: expression at the cell surface. EMBO J 5:3029–3037Google Scholar
  7. Creighton TE (1992) The disulfide folding pathway of BPTI. Science 256:111–114CrossRefGoogle Scholar
  8. Francisco JA, Earhart CF, Georgiou G (1992) Transport and anchoring of beta-lactamase to the external surface of Escherichia coli. Proc Natl Acad Sci USA 89:2713–2717CrossRefGoogle Scholar
  9. Francisco JA, Campbell R, Iverson BL, Georgiou G (1993) Production and fluorescence-activated cell sorting of Escherichia coli expressing a functional antibody fragment on the external surface. Proc Natl Acad Sci USA 90:10444–10448CrossRefGoogle Scholar
  10. Freudl R, MacIntyre S, Degen M, Henning U (1986) Cell surface exposure of the outer membrane protein OmpA of Escherichia coli K-12. J Mol Biol 188:491–494CrossRefGoogle Scholar
  11. Georgiou G, Stathopoulos C, Daugherty PS, Nayak AR, Iverson BL, Curtiss R, 3rd (1997) Display of heterologous proteins on the surface of microorganisms: from the screening of combinatorial libraries to live recombinant vaccines. Nat Biotechnol 15:29–34CrossRefGoogle Scholar
  12. Giffhorn F, Kopper S, Huwig A, Freimund S (2000) Rare sugars and sugar-based synthons by chemo-enzymatic synthesis. Enzyme Microb Technol 27:734–742CrossRefGoogle Scholar
  13. Grinberg AV, Hannemann F, Schiffler B, Muller J, Heinemann U, Bernhardt R (2000) Adrenodoxin: structure, stability, and electron transfer properties. Proteins 40:590–612CrossRefGoogle Scholar
  14. Hess J, Dreher A, Gentschev I, Goebel W, Ladel C, Miko D, Kaufmann SH (1996) Protein p60 participates in intestinal host invasion by Listeria monocytogenes. Zentralbl Bakteriol 284:263–272Google Scholar
  15. Jose J, Handel S (2003) Monitoring the cellular surface display of recombinant proteins by cysteine labeling and flow cytometry. Chembiochem 4:396–405CrossRefGoogle Scholar
  16. Jose J, von Schwichow S (2004a) Autodisplay of active sorbitol dehydrogenase (SDH) yields a whole cell biocatalyst for the synthesis of rare sugars. Chembiochem 5:100–108CrossRefGoogle Scholar
  17. Jose J, von Schwichow S (2004b) “Cystope tagging” for labeling and detection of recombinant protein expression. Anal Biochem 331:267–274CrossRefGoogle Scholar
  18. Jose J, Zangen D (2005) Autodisplay of the protease inhibitor aprotinin in Escherichia coli. Biochem Biophys Res Commun 333:1218–1226CrossRefGoogle Scholar
  19. Jose J, Jahnig F, Meyer TF (1995) Common structural features of IgA1 protease-like outer membrane protein autotransporters. Mol Microbiol 18:378–380CrossRefGoogle Scholar
  20. Jose J, Kramer J, Klauser T, Pohlner J, Meyer TF (1996) Absence of periplasmic DsbA oxidoreductase facilitates export of cysteine-containing passenger proteins to the Escherichia coli cell surface via the Iga beta autotransporter pathway. Gene 178:107–110CrossRefGoogle Scholar
  21. Jose J, Hannemann F, Bernhardt R (2001) Functional display of active bovine adrenodoxin on the surface of E. coli by chemical incorporation of the [2Fe–2S] cluster. Chembiochem 2:695–701CrossRefGoogle Scholar
  22. Jose J, Bernhardt R, Hannemann F (2002) Cellular surface display of dimeric Adx and whole cell P450-mediated steroid synthesis on E. coli. J Biotechnol 95:257–268CrossRefGoogle Scholar
  23. Jose J, Betscheider D, Zangen D (2005) Bacterial surface display library screening by target enzyme labelling: identification of new human cathepsin G inhibitors. Anal Biochem 346:258–267CrossRefGoogle Scholar
  24. Klauser T, Pohlner J, Meyer TF (1990) Extracellular transport of cholera toxin B subunit using Neisseria IgA protease beta-domain: conformation-dependent outer membrane translocation. EMBO J 9:1991–1999Google Scholar
  25. Klauser T, Pohlner J, Meyer TF (1992) Selective extracellular release of cholera toxin B subunit by Escherichia coli: dissection of Neisseria Iga beta-mediated outer membrane transport. EMBO J 11:2327–2335Google Scholar
  26. Klauser T, Pohlner J, Meyer TF (1993) The secretion pathway of IgA protease-type proteins in gram-negative bacteria. Bioessays 15:799–805CrossRefGoogle Scholar
  27. Konieczny MP, Suhr M, Noll A, Autenrieth IB, Alexander Schmidt M (2000) Cell surface presentation of recombinant (poly-) peptides including functional T-cell epitopes by the AIDA autotransporter system. FEMS Immunol Med Microbiol 27:321–332CrossRefGoogle Scholar
  28. Kramer U, Rizos K, Apfel H, Autenrieth IB, Lattemann CT (2003) Autodisplay: development of an efficacious system for surface display of antigenic determinants in Salmonella vaccine strains. Infect Immun 71:1944–1952CrossRefGoogle Scholar
  29. Lattemann CT, Maurer J, Gerland E, Meyer TF (2000) Autodisplay: functional display of active beta-lactamase on the surface of Escherichia coli by the AIDA-I autotransporter. J Bacteriol 182:3726–3733CrossRefGoogle Scholar
  30. Lee HW, Byun SM (2003) The pore size of the autotransporter domain is critical for the active translocation of the passenger domain. Biochem Biophys Res Commun 307:820–825CrossRefGoogle Scholar
  31. Lee SY, Choi JH, Xu Z (2003) Microbial cell-surface display. Trends Biotechnol 21:45–52CrossRefGoogle Scholar
  32. Maurer J, Jose J, Meyer TF (1997) Autodisplay: one-component system for efficient surface display and release of soluble recombinant proteins from Escherichia coli. J Bacteriol 179:794–804Google Scholar
  33. Maurer J, Jose J, Meyer TF (1999) Characterization of the essential transport function of the AIDA-I autotransporter and evidence supporting structural predictions. J Bacteriol 181:7014–7020Google Scholar
  34. McBride JD, Freeman HN, Leatherbarrow RJ (1999) Selection of human elastase inhibitors from a conformationally constrained combinatorial peptide library. Eur J Biochem 266:403–412CrossRefGoogle Scholar
  35. Philippsen A, Schirmer T, Stein MA, Giffhorn F, Stetefeld J (2005) Structure of zinc-independent sorbitol dehydrogenase from Rhodobacter sphaeroides at 2.4 A resolution. Acta Crystallogr D Biol Crystallogr 61:374–379CrossRefGoogle Scholar
  36. Pikuleva IA, Tesh K, Waterman MR, Kim Y (2000) The tertiary structure of full-length bovine adrenodoxin suggests functional dimers. Arch Biochem Biophys 373:44–55CrossRefGoogle Scholar
  37. Pohlner J, Halter R, Beyreuther K, Meyer TF (1987) Gene structure and extracellular secretion of Neisseria gonorrhoeae IgA protease. Nature 325:458–462CrossRefGoogle Scholar
  38. Pohlner J, Klauser T, Kuttler E, Halter R (1992) Sequence-specific cleavage of protein fusions using a recombinant Neisseria type 2 IgA protease. Biotechnology (NY) 10:799–804CrossRefGoogle Scholar
  39. Reetz MT (2000) Evolution in the test tube as a means to create enantioselective enzymes for use in organic synthesis. Sci Prog 83:157–172Google Scholar
  40. Rizos K, Lattemann CT, Bumann D, Meyer TF, Aebischer T (2003) Autodisplay: efficacious surface exposure of antigenic UreA fragments from Helicobacter pylori in Salmonella vaccine strains. Infect Immun 71:6320–6328CrossRefGoogle Scholar
  41. Schmidt M, Baumann M, Henke E, Konarzycka-Bessler M, Bornscheuer UT (2004) Directed evolution of lipases and esterases. Methods Enzymol 388:199–207CrossRefGoogle Scholar
  42. Schultheiss E, Paar C, Schwab H, Jose J (2002) Functional esterase surface display by the autotransporter pathway in Escherichia coli. J Mol Catal B Enzym 18:89–97CrossRefGoogle Scholar
  43. Smith GP (1985) Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228:1315–1317CrossRefGoogle Scholar
  44. Strauss A, Gotz F (1996) In vivo immobilization of enzymatically active polypeptides on the cell surface of Staphylococcus carnosus. Mol Microbiol 21:491–500CrossRefGoogle Scholar
  45. Wentzel A, Christmann A, Kratzner R, Kolmar H (1999) Sequence requirements of the GPNG beta-turn of the Ecballium elaterium trypsin inhibitor II explored by combinatorial library screening. J Biol Chem 274:21037–21043CrossRefGoogle Scholar
  46. Wernerus H, Stahl S (2004) Biotechnological applications for surface-engineered bacteria. Biotechnol Appl Biochem 40:209–228CrossRefGoogle Scholar
  47. Wilhelm S, Tommassen J, Jaeger KE (1999) A novel lipolytic enzyme located in the outer membrane of Pseudomonas aeruginosa. J Bacteriol 181:6977–6986Google Scholar
  48. Yavin EJ, Yan L, Desiderio DM, Fridkin M (1996) Synthetic peptides derived from the sequence of human C-reactive protein inhibit the enzymatic activities of human leukocyte elastase and human leukocyte cathepsin G. Int J Pept Protein Res 48:465–476CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Bioanalytik, Institut für Pharmazeutische und Medizinische ChemieHeinrich-Heine-UniversitätDüsseldorfGermany

Personalised recommendations