Morphology and productivity of filamentous fungi

Mini-Review

Abstract

Cultivation processes involving filamentous fungi have been optimised for decades to obtain high product yields. Several bulk chemicals like citric acid and penicillin are produced this way. A simple adaptation of cultivation parameters for new production processes is not possible though. Models explaining the correlation between process-dependent growth behaviour and productivity are therefore necessary to prevent long-lasting empiric test series. Yet, filamentous growth consists of a complex microscopic differentiation process from conidia to hyphae resulting in various macroscopically visible appearances. Early approaches to model this morphologic development are recapitulated in this review to explain current trends in this area of research. Tailoring morphology by adjusting process parameters is one side of the coin, but an ideal morphology has not even been found. This article reviews several reasons for this fact starting with nutrient supply in a fungal culture and presents recent advances in the investigation of fungal metabolism. It illustrates the challenge to unfold the relationship between morphology and productivity.

Notes

Acknowledgement

Financial support was provided by the German Research Foundation (DFG) through the collaborative research centre SFB 578 - “From gene to product” at the TU Braunschweig.

References

  1. Abarca ML, Accensi F, Cano J, Cabañes FJ (2004) Taxonomy and significance of black aspergilli. Antonie Van Leeuwenhoek 86:33–49CrossRefPubMedGoogle Scholar
  2. Adams HL, Thomas CR (1988) The use of image analysis for morphological measurements on filamentous microorganisms. Biotechnol Bioeng 32(5):707–712CrossRefGoogle Scholar
  3. Allen DG, Robinson CW (1990) Measurement of rheological properties of filamentous fermentation broths. Chem Eng Sci 45:37–48CrossRefGoogle Scholar
  4. Alvarez-Vasquez F, Gonzales-Alcon C, Torres NV (2000) Metabolism of citric acid production by Aspergillus niger: model definition, steady state analysis and constrained optimization of citric acid production rate. Biotechnol Bioeng 70:82–108CrossRefPubMedGoogle Scholar
  5. Amanullah A, Christensen LH, Hansen K, Nienow AW, Thomas CR (2002) Dependence of morphology on agitation intensity in fed-batch cultures of Aspergillus oryzae and its implications for recombinant protein production. Biotechnol Bioeng 77(7):815–826CrossRefPubMedGoogle Scholar
  6. Amanullah A, Jüsten P, Davies A, Paul GC, Nienow AW, Thomas CR (2000) Agitation induced mycelial fragmentation of Aspergillus oryzae and Penicillium chrysogenum. Biochem Eng J 5:109–114CrossRefPubMedGoogle Scholar
  7. Amanullah A, Leonildi E, Nienow AW, Thomas CR (2001) Dynamics of mycelia aggregation in cultures of Aspergillus oryzae. Bioprocess Biosyst Eng 24:101–107Google Scholar
  8. Ayazi Shamlou P, Makagiansar HY, Ison AP, Lilliy D, Thomas CR (1994) Turbulent breakage of filamentous microorganisms in submerged culture in mechanically stirred bioreactors. Chem Eng Sci 49(16):2621–2631CrossRefGoogle Scholar
  9. Bachewich C, Heath IB (1998) Radial F-actin arrays precede new hypha formation in Saprolegnia: implications for establishing polar growth and regulating tip morphogenesis. J Cell Sci 111:2005–2016PubMedGoogle Scholar
  10. Bergter F (1978) Kinetic model of mycelial growth. Z Allg Mikrobiol 18(2):143–145PubMedGoogle Scholar
  11. Bocking SP, Wiebe MG, Robson GD, Hansen K, Christiansen LH, Trinci APJ (1999) Effect of branch frequency in Aspergillus oryzae on protein secretion and culture viscosity. Biotechnol Bioeng 65(6):638–648CrossRefPubMedGoogle Scholar
  12. Borchert M, Libra JA (2001) Decolorization of reactive dyes by the white and rot fungus Trametes versicolor in sequencing bath reactors. Biotechnol Bioeng 57:313–321CrossRefGoogle Scholar
  13. Bowen AR, Chen-Wu JL, Momany M, Young R, Szaniszlo PJ, Robbins PW (1992) Classification of fungal chitin synthases. Proc Natl Acad Sci USA 89(2):519–523PubMedGoogle Scholar
  14. Brakhage AA (1998) Molecular regulation of β-lactam biosynthesis in filamentous fungi. Microbiol Mol Biol Rev 62(3):547–585PubMedGoogle Scholar
  15. Brakhage AA, Spröte PQ A-A, Gehrke A, Plattner H, Tüncher A (2004) Regulation of penicillin biosynthesis in filamentous fungi. Adv Biochem Eng Biotechnol 88:45–90PubMedGoogle Scholar
  16. Broekhuijsen MP, Mattern IE, Contreras R, Kinghorn JR, van den Hondel CAMJJ (1993) Secretion of heterologous proteins by Aspergillus niger: production of active human interleukin-6 in a protease-deficient mutant by KEX2-like processing of a glucoamylase-hIL6 fusion protein. J Biotechnol 31:135–145CrossRefPubMedGoogle Scholar
  17. Brown CM, Hugh JS (1965) Elongation of yeast cells in continuous culture. Nature 206(985):676–678PubMedGoogle Scholar
  18. Caldwell IY, Trinci APJ (1973) The growth unit of the mould Geotrichum candidum. Arch Mikrobiol 88(1):1–10CrossRefPubMedGoogle Scholar
  19. Carter BLA, Bull AT (1971) The effect of oxygen tension in the medium on the morphology and growth kinetics of Aspergillus nidulans. J Gen Microbiol 65:265–273Google Scholar
  20. Charles M (1978) Technical aspects of the rheological properties of microbial cultures. Adv Biochem Eng Biotechnol 8:1–62Google Scholar
  21. Clark DS, Ito K, Horitsu H (1966) Effect of manganese and other heavy metals on submerged citric acid fermentation of molasses. Biotechnol Bioeng 8:465–471CrossRefGoogle Scholar
  22. Conesa A, Punt PJ, Luijk Nv, Hondel CAMJJvd (2001) The secretion pathway in filamentous fungi: a biotechnological view. Fungal Genet Biol 33(3):155–171CrossRefPubMedGoogle Scholar
  23. Cox PW, Thomas CR (1992) Classification and measurement of fungal pellets by automated image analysis. Biotechnol Bioeng 39:945–952CrossRefGoogle Scholar
  24. Cui YQ, Lans RGJMvd, Luyben KCAM (1997) Effect of agitation intensities on fungal morphology of submerged fermentation. Biotechnol Bioeng 55(5):715–726CrossRefGoogle Scholar
  25. Cui YQ, Lans RGJMvd, Luyben KCAM (1998) Effects of dissolved oxygen tension and mechanical forces on fungal morphology in submerged fermentation. Biotechnol Bioeng 57(4):409–419CrossRefPubMedGoogle Scholar
  26. David H, Akesson M, Nielsen J (2003) Reconstruction of the central carbon metabolism of Aspergillus niger. Eur J Biochem 270(21):4243–4253CrossRefPubMedGoogle Scholar
  27. Dickman MB, Yarden O (1999) Serin/threonine protein kinases and phosphatases in filamentous fungi. Fungal Genet Biol 26(2):99–117CrossRefPubMedGoogle Scholar
  28. Dunn-Coleman NS, Bloebaum P, Berka RM, Bodie E, Robinson N, Armstrong G, Ward M, Przetak M, Carter GL, LaCost R (1991) Commercial levels of chymosin production by Aspergillus. Nat Biotechnol 9(10):976–981CrossRefGoogle Scholar
  29. Edwards JS, Palsson BO (2000) The Escherichia coli MG 1655 in silico metabolic genotype: its definition, characteristics, and capabilities. Proc Natl Acad Sci USA 97:5528–5533CrossRefPubMedGoogle Scholar
  30. Elander RP (2003) Industrial production of βlactam antibiotics. Appl Microbiol Biotechnol 61:385–392PubMedGoogle Scholar
  31. El-Enshasy HA, Hellmuth K, Rinas U (1999) Fungal morphology in submerged cultures and its relation to glucose oxidase excretion by recombinant Aspergillus niger. Appl Biochem Biotechnol 81(1):1–11CrossRefPubMedGoogle Scholar
  32. Emerson S (1950) The growth phase in Neurospora corresponding to the logarithmic phase in unicellular organisms. J Bacteriol 60(3):221–223PubMedGoogle Scholar
  33. Escamilla Silva EM, Gutierrez GF, Dendooven L, Jiménez IH, Ochoa-Tapia JA (2001) A method to evaluate the isothermal effectiveness factor for dynamic oxygen into mycelial pellets in submerged cultures. Biotechnol Prog 17:95–103CrossRefPubMedGoogle Scholar
  34. Evers ME, Trip H, van den Berg MA, Bovenberg RAL, Driessen AJM (2004) Compartmentalization and transport in β-lactam antibiotics biosynthesis. Adv Biochem Eng Biotechnol 88:111–137PubMedGoogle Scholar
  35. Fatile IA (1985) Rheological characteristics of suspensions of Aspergillus niger: correlations of rheological parameters with microbial concentration and shape of the mycelial aggregate. Appl Microbiol Biotechnol 21:60–64CrossRefGoogle Scholar
  36. Finkelstein DB (1987) Improvement of enzyme production in Aspergillus. Antonie Van Leeuwenhoek 53(5):349–352CrossRefPubMedGoogle Scholar
  37. Förster J, Famili I, Fu P, Palsson BO, Nielsen J (2003) Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. Genome Res 13:244–253CrossRefPubMedGoogle Scholar
  38. Fu Y-C, Zhang TC, Bishop PL (1994) Determination of effective oxygen diffusivity in biofilms grown in a completely mixed biodrum reactor. Water Sci Technol 29(10–11):455–462Google Scholar
  39. Fujita M, Iwahori K, S. T, Yamakawa K (1994) Analysis of pellet formation of Aspergillus niger based on shear-stress. J Ferment Bioeng 78(5):368–373CrossRefGoogle Scholar
  40. Fujiwara M, Horiuchi H, Ohta A, Takagi M (1997) A novel fungal gene encoding chitin synthase with a myosin motor-like domain. Biochem Biophys Res Comm. 236(1):75–78CrossRefPubMedGoogle Scholar
  41. Ganzlin M (2000) Untersuchungen der induzierten proteinproduktion unter kontrolle des glucoamylasepromotors in Aspergillus niger. Doctoral thesis, Braunschweig: Technische Universität Carolo-WilhelminaGoogle Scholar
  42. Gerngross TU (2004) Advances in the production of human therapeutic proteins in yeast and filamentous fungi. Nat Biotechnol 22(11):1409–1414CrossRefPubMedGoogle Scholar
  43. Gooday GW (1994) Cell Walls. In: Gow NAR, Gadd GM (eds) The growing fungus. Chapman & Hall, London, p 43–62Google Scholar
  44. Grimm LH, Kelly S, Hengstler J, Göbel A, Krull R, Hempel DC (2004) Kinetic studies on the aggregation of Aspergillus niger conidia. Biotechnol Bioeng 87(2):213–218CrossRefPubMedGoogle Scholar
  45. Grimm LH, Kelly S, Völkerding II, Krull R, Hempel DC (in press) Influence of mechanical stress and surface interaction on the aggregation of Aspergillus niger conidia. Biotechnol BioengGoogle Scholar
  46. Guebel DV, Darias NVT (2001) Optimization of the citric acid production by Aspergillus niger through a metabolic flux balance model. Electron J Biotechnol 4:1–17Google Scholar
  47. Gupta JK, Helding LD, Jorgensen OB (1976) Effect of sugars, hydrogen ion concentration and ammonium nitrate on the formation of citric acid by Aspergillus niger. Acta Microbiol 23:63–67Google Scholar
  48. Habison A, Kubicek CP, Röhr M (1979) Phosphofructokinase as a regulatory enzyme in citric acid producing Aspergillus niger. FEMS Microbiol Lett 5:39–42CrossRefGoogle Scholar
  49. Hamanaka T, Higashiyama K, Fujikawa S, Park EY (2001) Mycelial pellet intrastructure and visualization of mycelia and intracellular lipid in a culture of Mortierella alpina. Appl Microbiol Biotechnol 56:233–238CrossRefPubMedGoogle Scholar
  50. Han JR, An CH, Yuan JM (2005) Solid-state fermentation of cornmeal with the basidiomycete Ganoderma lucidum for degrading starch and upgrading nutritional value. J Appl Microbiol 99:910–915CrossRefPubMedGoogle Scholar
  51. Haq IU, Ali S, Qadeer MA, Iqbal J (2002) Effect of copper ions on mould morphology and citric acid productivity by Aspergillus niger using molasses based media. Process Biochem 37:1085–1090CrossRefGoogle Scholar
  52. Harris SD, Hamer L, Sharpless KE, Hamer JE (1997) The Aspergillus nidulans sepA gene encodes an FH 1/2 protein involved in cytokinesis and the maintenance of cellular polarity. EMBO J 16(12):3474–3483CrossRefPubMedGoogle Scholar
  53. Harris SD, Hofman AF, Tedford HW, Lee MP (1999) Identification and characterization of genes required for hyphal morphogenesis in filamentous fungus Aspergillus nidulans. Genetics 151:1015–1025PubMedGoogle Scholar
  54. Hellendoorn L, Mulder H, Heuvel JCvd, Ottengraf SPP (1998) Intrinsic kinetic parameters of the pellet forming fungus Aspergillus awamori. Biotechnol Bioeng 58(5):478–485CrossRefPubMedGoogle Scholar
  55. Hille A, Neu TR, Hempel DC, Horn H (in press) Oxygen profiles and biomass distribution in biopellets of Aspergillus niger. Biotechnol BioengGoogle Scholar
  56. Honecker S, Bisping B, Yang Z, Rehm HJ (1989) Influence of sucrose concentration and phosphate limitation on citric acid production by immobilized cells of Aspergillus niger. Appl Microbiol Biotechnol 31:17–24CrossRefGoogle Scholar
  57. Howard RJ, Aist JR (1980) Cytoplasmic microtubules and fungal morphogenesis: ultrastructural effects of methyl benzimidazole-2-ylcarbamate determined by freeze-substitution of hyphal tip cells. J Cell Biol 87(1):55–64CrossRefPubMedGoogle Scholar
  58. Huang MY, Bungay HR (1973) Microprobe measurements of oxygen concentrations in mycelial pellets. Biotechnol Bioeng 24:1193–1197CrossRefGoogle Scholar
  59. Jackson SL, Heath IB (1993) Roles of calcium ions in hyphal tip growth. Microbiol Rev 57(2):367–382PubMedGoogle Scholar
  60. Johansen CL, Coolen L, Hunik JH (1998) Influence of morphology on product formation in Aspergillus awamori during submerged fermentations. Biotechnol Prog 14:233–240CrossRefPubMedGoogle Scholar
  61. Josten V, Lokman C, van den Hondel CAMJJ, Punt PJ (2003) The production of antibody fragments and antibody fusion proteins by yeast and filamentous fungi. Microbial Cell Factories 2(1):1–15CrossRefPubMedGoogle Scholar
  62. Jungebloud A, Bohle K, Goecke Y, Haesner M, Cordes C, Horn H, Hempel DC. (2005) Quantification of product- specific gene expression in biopellets of A niger with real-time PCR. Anal. Chem: submittedGoogle Scholar
  63. Jüsten P, Paul GC, Nienow AW, Thomas CR (1996) Dependence of mycelial morphology on impeller type and agitation intensity. Biotechnol Bioeng 52(6):672–684CrossRefGoogle Scholar
  64. Kaminskyj SGW, Hamer JE (1998) hyp loci control cell pattern formation in the vegetative mycelium of Aspergillus nidulans. Genetics 148:669–680PubMedGoogle Scholar
  65. Kanaly RA, Kim IS, Hur H-G (2005) Biotransformation of 3-methyl-4-nitrophenol, a main product of the insecticide fenitrothion, by Aspergillus niger. J Agric Food Chem 53:6426–6431CrossRefPubMedGoogle Scholar
  66. Kelly S, Grimm LH, Hengstler J, Schultheis E, Krull R, Hempel DC (2004) Agitation effects on submerged growth and product formation of Aspergillus niger. Bioprocess Biosyst Eng 26(5):315–323CrossRefPubMedGoogle Scholar
  67. Kossen NWF (2000) The morphology of filamentous Fungi. Adv Biochem Eng Biotechnol 70:1–34PubMedGoogle Scholar
  68. Kristiansen B, Sinclair CG (1979) Production of citric acid in continuous culture. Biotechnol Bioeng 21:297–315CrossRefGoogle Scholar
  69. Kubicek CP, Röhr M (1977) Influence of manganese on enzyme synthesis and citric acid accumulation by Aspergillus niger. Eur J Appl Microbiol 4:167–173CrossRefGoogle Scholar
  70. Li ZJ, Shukla V, Wenger KS, Fordyce AP, Pedersen AG, Marten MR (2002) Effects of increased impeller power in a production-scale Aspergillus oryzae fermentation. Biotechnol Prog 18(3):437–444CrossRefPubMedGoogle Scholar
  71. Madhani HD, Fink GR (1998) The control of filamentous differentiation and virulence in fungi. Trends Cell Biol 8(9):348–353CrossRefPubMedGoogle Scholar
  72. Maeda H, Yamagata Y, Abe K, Hasegawa F, Machida M, Ishioka R, Gomi K, Nakajima T (2005) Purification and characterization of a biodegradable plastic-degrading enzyme from Aspergillus oryzae. Appl Microbiol Biotechnol 67:778–788CrossRefPubMedGoogle Scholar
  73. Magnuson JK, Lasure LL (2004) Organic acid production by filamentous fungi. In: Tkacz JS, Lange L (eds) Advances in fungal bio/technology for industry, agriculture and medicine. Springer, Berlin Heidelberg New York, p 307–340Google Scholar
  74. Makagiansar HY, Ayazi Shamlou P, Thomas CR, Lilliy MD (1993) The influence of mechanical forces on the morphology and penicillin production of Penicillium chrysogenum. Bioprocess Eng 9(2–3):83–90CrossRefGoogle Scholar
  75. Maras M, Die Iv, Contreras R, Hondel CAMJJvd (1999) Filamentous fungi as production organisms for glycoproteins of bio-medical interest. Glycoconj J 16(2):99–107CrossRefPubMedGoogle Scholar
  76. McIntyre M, Müller C, Dynesen J, Nielsen J (2001) Metabolic engineering of the morphology of Aspergillus. Adv Biochem Eng Biotechnol 73:103–128PubMedGoogle Scholar
  77. Metz B, Bruijn EWd, Suijdam JCv (1981) Method for quantitative representation of the morphology of molds. Biotechnol Bioeng 23:149–162CrossRefGoogle Scholar
  78. Metz B, Kossen NWF (1977) The growth of molds in the form of pellets—a literature review. Biotechnol Bioeng 14:781–799CrossRefGoogle Scholar
  79. Metz B, Kossen NWF, Suijdam JCv (1979) The rheology of mould suspensions. Adv Biochem Eng Biotechnol 11:104–56Google Scholar
  80. Meyerhoff J, Bellgardt K-H (1995) Two mathematical models for the development of a single microbial pellet, part II. Bioprocess Eng 12:315–322Google Scholar
  81. Meyerhoff J, Tiller V, Bellgardt K-H (1995) Two mathematical models for the development of a single microbial pellet. Part I: detailed morphological model based on the description of individual hyphae. Bioprocess Eng 12:305–313Google Scholar
  82. Momamy M, Taylor I (2000) Landmarks in the early duplication cycles of Aspergillus fumigatus and Aspergillus nidulans: polarity, germ tube emergence and septation. Microbiology 146:3279–3284PubMedGoogle Scholar
  83. Morita S, Kuriyama M, Nakatsu M, Kitano K (1994) High level expression of Fusarium alkaline protease gene in Acremonium chrysogenum. Biosci Biotechnol Biochem 58(4):627–630PubMedCrossRefGoogle Scholar
  84. Müller C, McIntyre M, Hansen K, Nielsen J (2002) Metabolic engineering of the morphology of Aspergillus oryzae by altering chitin synthesis. Appl Environ Microbiol 68(4):1827–1836CrossRefPubMedGoogle Scholar
  85. Müller C, Spohr A, Nielsen J (2000) Role of substrate concentration in mitosis and hyphal extension of Aspergillus. Biotechnol Bioeng 67:390–397CrossRefPubMedGoogle Scholar
  86. Nielsen J (1993) A simple morphologically structured model describing the growth of filamentous microorganisms. Biotechnol Bioeng 41(7):715–727CrossRefGoogle Scholar
  87. Nielsen J, Krabben P (1995) Hyphal growth and fragmentation of Penicillium chrysogenum in submerged cultures. Biotech Bioeng 46(6):588–598CrossRefGoogle Scholar
  88. Northrop FD, Ljubojevic S, Davies JM (1997) Influence of Na and anions on the dimorphic transition of Candida albicans. Microbiology 143:3757–3765PubMedGoogle Scholar
  89. Olsvisk ES, Kristiansen B (1994) Rheology of filamentous fermentations. Biotechnol Adv 12:1–39CrossRefPubMedGoogle Scholar
  90. Papagianni M (2004) Fungal morphology and metabolite production in submerged mycelial processes. Biotechnol Adv 22:189–259CrossRefPubMedGoogle Scholar
  91. Papagianni M, Mattey M, Kristiansen B (1998) Citric acid production and morphology of Aspergillus niger as functions of the mixing intensity in a stirred tank and a tubular loop bioreactor. Biochem Eng J 2(3):197–205CrossRefGoogle Scholar
  92. Papagianni M, Mattey M, Kristiansen B (1999) The influence of glucose concentration on citric acid production and morphology of Aspergillus niger in batch and glucostat culture. Enzyme Microb Technol 25:710–717CrossRefGoogle Scholar
  93. Papagianni M, Moo-Young M (2002) Protease secretion in glucoamylase producer Aspergillus niger cultures: fungal morphology and inoculum effects. Process Biochem 37:1271–1278CrossRefGoogle Scholar
  94. Parton RM, Fischer S, Malhó R, Papasouliotis O, Jelitto TC, Leonard T, Read ND (1997) Pronounced cytoplasmic pH gradients are not required for tip growth in plant and fungal cells. J Cell Sci 110:1187–1198PubMedGoogle Scholar
  95. Paul GC, Kent A, Thomas CR (1993) Viability testing and characterization of germination of fungal spores by automatic image analysis. Biotechnol Bioeng 42(1):11–23CrossRefGoogle Scholar
  96. Paul GC, Thomas CR (1998) Characterisation of mycelial morphology using image analysis. In: Scheper T (ed) Advances in biochemical engineering biotechnology. Springer, Berlin Heidelberg New York, p 2–59Google Scholar
  97. Peksel A, Torres NV, Liu J, Juneau G, Kubicek CP (2002) 13C-NMR analysis of glucose metabolism during citric acid production by Aspergillus niger. Appl Microbiol Biotechnol 58:157–163CrossRefPubMedGoogle Scholar
  98. Pons MN, Vivier H (1998) Beyond filamentous species. In: Scheper T (ed) Advances in biochemical engineering biotechnology. Springer, Berlin Heidelberg New York, p 61–93Google Scholar
  99. Prosser JI, Trinci APJ (1979) A model of hyphal growth and branching. J Gen Microbiol 111(1):153–164PubMedGoogle Scholar
  100. Punt PJ, Biezen vN, Conesa A, Albers A, J. M, Hondel CAvd (2002) Filamentous fungi as cell factories for heterologous protein production. Trends Biotechnol 20:200–206CrossRefPubMedGoogle Scholar
  101. Radzio R, Kück U (1997) Synthesis of biotechnologically relevant heterologous proteins in filamentous fungi. Process Biochem 32(6):529–539CrossRefGoogle Scholar
  102. Reissig JL, Kinney SG (1983) Calcium as a branching signal in Neurospora crassa. J Bacteriol 154(3):1397–1402PubMedGoogle Scholar
  103. Riley GL, Tucker KG, Paul GC, Thomas CR (2000) Effect of biomass concentration and mycelial morphology on fermentation broth rheology. Biotechnol Bioeng 68(2):160–172CrossRefPubMedGoogle Scholar
  104. Rinas U, El-Enshasy HA, Emmler M, Hille A, Hempel DC, Horn H (2005) Model-based prediction of substrate conversion and protein synthesis and excretion in recombinant Aspergillus niger biopellets. Chem Eng Sci 60:2729–2739CrossRefGoogle Scholar
  105. Robson GD, Wiebe MG, Trinci APJ (1991) Exogenous cAMP and cGMP modulate branching in Fusarium graminearum. J Gen Microbiol 137(4):963–969PubMedGoogle Scholar
  106. Schmidt FR (2004) Recombinant expression systems in the pharmaceutical industry. Appl Microbiol Biotechnol 65:363–372CrossRefPubMedGoogle Scholar
  107. Shu P, Johnson MG (1984) Citric acid production by submerged fermentation with Aspergillus niger. Ind Eng Chem 40(7):1202–1205CrossRefGoogle Scholar
  108. Smedsgaard J, Nielsen J (2005) Metabolite profiling of fungi and yeast: from phenotype to metabolome by MS and informatics. J Exp Bot 56(410):273–286CrossRefPubMedGoogle Scholar
  109. Sonneborn A, Bockmühl DP, Gerads M, Kurpanek K, Sanglard D, Ernst JF (2000) Protein kinase A encoded by TPK2 regulates dimorphism of Candida albicans. Mol Microbiol 35(2):386–396CrossRefPubMedGoogle Scholar
  110. Spohr A, Dam- Mikkelsen C, Carlsen M, Nielsen J, Villadsen J (1998) On-line study of fungal morphology during submerged growth in a small flow-through cell. Biotechnol Bioeng 58(5):541–543CrossRefPubMedGoogle Scholar
  111. Suijdam JCv, Metz B (1981) Influence of engineering variables upon the morphology of filamentous molds. Biotechnol Bioeng 23(1):111–148CrossRefGoogle Scholar
  112. Sumathi S, Manju BS (2000) Uptake of reactive textile dyes by Aspergillus foetidus. Enzyme Microb Technol 27:347–355CrossRefPubMedGoogle Scholar
  113. Taylor JW (1995) Making the Deuteromycota redundant: a practical integration of mitosporic and meiosporic fungi. Can J Bot 73:754–759Google Scholar
  114. Torralba S, Raudaskoski M, Pedregosa AM, Laborda F (1998) Effect of cytochalasin A on apical growth, action cytoskeleton organization and enzyme secretion in Aspergillus nidulans. Microbiology 144(Pt1):45–53PubMedGoogle Scholar
  115. Trinci APJ (1974) A study of the kinetics of hyphal extension and branch initiation of fungal mycelia. J Gen Microbiol 81(1):225–236PubMedGoogle Scholar
  116. Tucker KG, Thomas CR (1993) Effect of biomass concentration and morphology on the rheological parameters of Penicillum chrysogenum fermentation broths. Trans Inst Chem Eng 71:111–117Google Scholar
  117. Valkonen M, Ward M, Wang H, Pentttila M, Salonheimo M (2003) Improvenment of foreign-protein production in Aspergillus niger var. awamori by constitutive induction of the unfolded-protein response. Appl Environ Microbiol 69(12):6979–6986CrossRefPubMedGoogle Scholar
  118. Vanhoutte B, Pons MN, Thomas CR, Louvel L, Vivier H (1995) Characterization of Penicillium chrysogenum physiology in submerged cultures by color and monochrome image analysis. Biotechnol Bioeng 48(1):1–11CrossRefGoogle Scholar
  119. Ward M, Lin C, Victoria DC, Fox BP, Fox JA, Wong DL, Meerman HJ, Pucci JP, Fong RB, Heng MH et al (2004) Characterization of humanized antibodies secreted by Aspergillus niger. Appl Environ Microbiol 70(5):2567–2576CrossRefPubMedGoogle Scholar
  120. Wiebe MG, Karandikar A, Robson GD, Trinci APJ, Candia JF, Trapp S, Wallis G, Rinas U, Derkx PMF, Madrid SM et al (2001) Production of tissue plasminogen activator (t-PA) in Aspergillus niger. Biotechnol Bioeng 76(2):164–174CrossRefPubMedGoogle Scholar
  121. Wittler R, Baumgartl H, Lübbers DW, Schügerl K (1986) Investigations of oxygen transfer into Penicillium chrysogenum pellets by microprobe measurements. Biotechnol Bioeng 28:1024–1036CrossRefGoogle Scholar
  122. Wongwicharn A, McNeil B, Harvey LM (1999) Effect of oxygen enrichment on morphology, growth, and heterologous protein production in chemostat cultures of Aspergillus niger B1-D. Biotechnol Bioeng 65(4):416–424CrossRefPubMedGoogle Scholar
  123. Wösten HAB, Moukha SM, Sietsma JH, Wessels JGH (1991) Localization of growth and secretion of proteins in Aspergillus niger. J Gen Microbiol 137(1):2017–2023PubMedGoogle Scholar
  124. Xiang X, Morris NR (1999) Hyphal tip growth and nuclear migration. Curr Opin Microbiol 2(6):636–640CrossRefPubMedGoogle Scholar
  125. Xu DB, Madrid CP, Röhr M, Kubicek CP (1989) The influence of type and concentration of the carbon source on production of citric acid by Aspergillus niger. Appl Microbiol Biotechnol 30:553–558Google Scholar
  126. Yang H, King R, Reichl U, Gilles ED (1992a) Mathematical model for apical growth, septation, and branching of mycelial microorganisms. Biotechnol Bioeng 39(1):49–58CrossRefGoogle Scholar
  127. Yang H, Reichel U, King R, Gilles ED (1992b) Measurement and simulation of the morphological development of filamentous microorganisms. Biotechnol Bioeng 39(1):44–48CrossRefGoogle Scholar
  128. Zhang TC, Bishop PL (1994) Evaluation of tortuosity factors and effective diffusivities in biofilms. Water Res 28(11):2279–2287CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • L. H. Grimm
    • 1
  • S. Kelly
    • 1
  • R. Krull
    • 1
  • D. C. Hempel
    • 1
  1. 1.Institute of Biochemical EngineeringTechnical University of BraunschweigBraunschweigGermany

Personalised recommendations