Applied Microbiology and Biotechnology

, Volume 71, Issue 5, pp 748–760 | Cite as

Changes in bacterial community structure correlate with initial operating conditions of a field-scale denitrifying fluidized bed reactor

  • C. Hwang
  • W.-M. Wu
  • T. J. Gentry
  • J. Carley
  • S. L. Carroll
  • C. Schadt
  • D. Watson
  • P. M. Jardine
  • J. Zhou
  • R. F. Hickey
  • C. S. Criddle
  • M. W. Fields
Environmental Biotechnology

Abstract

High levels of nitrate are present in groundwater migrating from the former waste disposal ponds at the Y-12 National Security Complex in Oak Ridge, TN. A field-scale denitrifying fluidized bed reactor (FBR) was designed, constructed, and operated with ethanol as an electron donor for the removal of nitrate. After inoculation, biofilms developed on the granular activated carbon particles. Changes in the bacterial community of the FBR were evaluated with clone libraries (n=500 partial sequences) of the small-subunit rRNA gene for samples taken over a 4-month start-up period. Early phases of start-up operation were characterized by a period of selection, followed by low diversity and predominance by Azoarcus-like sequences. Possible explanations were high pH and nutrient limitations. After amelioration of these conditions, diversification increased rapidly, with the appearance of Dechloromonas, Pseudomonas, and Hydrogenophaga sequences. Changes in NO3, SO4, and pH also likely contributed to shifts in community composition. The detection of sulfate-reducing-bacteria-like sequences closely related to Desulfovibrio and Desulfuromonas in the FBR have important implications for downstream applications at the field site.

References

  1. Boga HI, Brune A (2003) Hydrogen-dependent oxygen reduction by homoacetogenic bacteria isolated from termite guts. Appl Environ Microbiol 69:779–786CrossRefPubMedGoogle Scholar
  2. Brooks SC, Fredrickson JK, Carroll SL, Kennedy DW, Zachara JM, Plymale AE, Kelly SD, Kemner KM, Fendorf S (2003) Inhibition of bacterial U(VI) reduction by calcium. Environ Sci Technol 37:1850–1858CrossRefPubMedGoogle Scholar
  3. Brown MV, Bowman JP (2001) A molecular phylogenetic survey of sea–ice microbial communities (SIMCO). FEMS Microbiol Ecol 35:267–275CrossRefPubMedGoogle Scholar
  4. Do YS, Schmidt TM, Zahn JA, Boyd ES, de la Mora A, DiSpirito AA (2003) Role of Rhodobacter sp. strain PS9, a purple non-sulfur photosynthetic bacterium isolated from an anaerobic swine waste lagoon, in odor remediation. Appl Environ Microbiol 69:1710–1720CrossRefPubMedGoogle Scholar
  5. Fields MW, Yan T, Rhee S-K, Carroll SL, Jardine PM, Watson DB, Criddle CS, Zhou J (2005) Impacts on microbial communities and cultivable isolates from groundwater contaminated with high levels of nitric acid–uranium waste. FEMS Microbiol Ecol 53:417–428CrossRefGoogle Scholar
  6. Gentile M, Yan T, Tiquia SM, Fields MW, Nyman J, Zhou J, Criddle CS (2005) Stability in a denitrifying fluidized bed reactor. Microb Ecol (in press)Google Scholar
  7. Gu B, Brooks SC, Roh Y, Jardine PM (2003) Geochemical reactions and dynamics during titration of a contaminated groundwater with high uranium, aluminum, and calcium. Geochim Cosmochim Acta 67:2749–2761CrossRefGoogle Scholar
  8. Gu B, Wu WM, Ginder-Vogel MA, Yan H, Fields MW, Zhou J, Fendorf S, Criddle CS, Jardine PM (2005) Bioreduction of uranium in a contaminated soil column. Environ Sci Technol 39:4841–4847CrossRefPubMedGoogle Scholar
  9. Kampfer P, Schulze R, Jackel U, Malik KA, Amann R, Spring S (2005) Hydrogenophaga defluvii sp. nov. and Hydrogenophaga atypica sp. nov., isolated from activated sludge. Int J Syst Evol Microbiol 55:341–334Google Scholar
  10. Khan ST, Hiraishi A (2002) Diaphorobacter nitroreducens gen nov., sp nov., a poly(3-hydroxybutyrate)-degrading denitrifying bacterium isolated from activated sludge. J Gen Appl Microbiol 48:299–308PubMedCrossRefGoogle Scholar
  11. Kim BH, Park HS, Kim HJ, Kim GT, Chang IS, Lee J, Phung NT (2004) Enrichment of microbial community generating electricity using a fuel-cell-type electrochemical cell. Appl Microbiol Biotechnol 63:672–681CrossRefPubMedGoogle Scholar
  12. Kniemeyer O, Probian C, Rossello-Mora R, Harder J (1999) Anaerobic mineralization of quaternary carbon atoms: isolation of denitrifying bacterial on dimethylmalonate. Appl Environ Microbiol 65:3319–3324PubMedGoogle Scholar
  13. Kumar S, Tamura K, Jakobsen IB, Nei M (2001) MEGA2: molecular evolutionary genetics analysis software. Bioinformatics 17:1244–1245CrossRefPubMedGoogle Scholar
  14. Luo J, Wu W, Fienen MN, Jardine PM, Mehlhorn TL, Watson DB, Cirpka OA, Criddle CS, Kitanidis PK (2005) A nested-cell approach for in situ remediation. Groundwater (in press)Google Scholar
  15. Massol-Deya A, Weller R, Rios-Hernandez L, Zhou JZ, Hickey RF, Tiedje JM (1997) Succession and convergence of biofilm communities in fixed-film reactors treating aromatic hydrocarbons in groundwater. Appl Environ Microbiol 63:270–276PubMedGoogle Scholar
  16. Mogensen GL, Kjeldsen KU, Ingvorsen K (2005) Desulfovibrio aerotolerans sp. nov., an oxygen tolerant sulfate-reducing bacterium isolated from activated sludge. Anaerobe 11:339–349CrossRefGoogle Scholar
  17. Matthies C, Evers S, Ludwig W, Schink B (2000) Anaerovorax odorimutans gen. nov., sp. nov., a putrescine-fermenting, strictly anaerobic bacterium. Int J Syst Evol Microbiol 50:1591–1594PubMedGoogle Scholar
  18. Ozdemir G, Ozturk T, Ceyhan N, Isler R, Cosar T (2003) Heavy metal biosorption by biomass of Ochrobactrum anthropi producing exopolysaccharide in activated sludge. Bioresour Technol 90:71–74CrossRefPubMedGoogle Scholar
  19. Pfennig N, Widdel F (1982) The bacteria of the sulphur cycle. Philos Trans R Soc Lond B Biol Sci 298:433–441PubMedCrossRefGoogle Scholar
  20. Qiu X, Wu L, Huang H, McDonel PE, Palumbo AV, Tiedje JM, Zhou J (2001) Evaluation of PCR-generated chimeras, mutations, and heteroduplexes with 16S rRNA gene-based cloning. Appl Envir Microbiol 67:880–887CrossRefGoogle Scholar
  21. Rosencrantz D, Rainey FA, Janssen PH (1999) Culturable populations of Sporomusa spp. and Desulfovibrio spp. in the anoxic bulk soil of flooded rice microcosms. Appl Environ Microbiol 65:3526–3533PubMedGoogle Scholar
  22. Rittimann BE, McCarty PL (2001) Environmental biotechnology: principles and applications. McGraw-Hill, Boston, pp 126–164, pp 497–534Google Scholar
  23. Senko JM, Istok JD, Suflita JM, Krumholz LR (2002) In situ evidence for uranium immobilization and remobilization. Environ Sci Technol 36:1491–1496CrossRefPubMedGoogle Scholar
  24. Singleton DR, Furlong MA, Rathbun SL, Whitman WB (2001) Quantitative comparisons of 16S rRNA gene sequence libraries from environmental samples. Appl Environ Microbiol 67:4374–4376CrossRefPubMedGoogle Scholar
  25. Snaidr J, Amann R, Huber I, Ludwig W, Schleifer KH (1997) Phylogenetic analysis and in situ identification of bacteria in activated sludge. Appl Environ Microbiol 63:2884–2896PubMedGoogle Scholar
  26. Song B, Young LY, Palleroni NJ (1998) Identification of denitrifier strain T1 as Thauera aromatica and proposal for emendation of the genus Thauera definition. Int J Syst Bacteriol 48:889–894PubMedCrossRefGoogle Scholar
  27. Song B, Palleroni NJ, Haggblom MM (2000) Isolation and characterization of diverse halobenzoate-degrading denitrifying bacteria from soils and sediments. Appl Environ Microbiol 66:3446–3453CrossRefPubMedGoogle Scholar
  28. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weigh matrix choice. Nucleic Acids Res 22:4673–4680PubMedCrossRefGoogle Scholar
  29. US Environmental Protection Agency (1993) Manual: nitrogen control. EPA Office of Research and Development, Cincinnati, EPA/625/R-93/010Google Scholar
  30. van Schie PM, Young LY (1998) Isolation and characterization of phenol-degrading denitrifying bacteria. Appl Environ Microbiol 64:2432–2438PubMedGoogle Scholar
  31. Wagner M, Loy A, Nogueira R, Purkhold U, Lee N, Daims H (2002) Microbial community composition and function in wastewater treatment plants. Antonie Van Leeuwenhoek 81:665–680CrossRefPubMedGoogle Scholar
  32. Wu WM, Gu B, Fields MW, Gentile M, Ku YK, Yan H, Tiquias S, Yan T, Nyman J, Zhou J, Jardine PM, Criddle CS (2005) Uranium (VI) reduction by denitrifying biomass. Bioremediation Journal 9:1–13CrossRefGoogle Scholar
  33. Zhou J, Bruns MA, Tiedje JM (1996) DNA recovery from soils of diverse composition. Appl Environ Microbiol 62:316–322PubMedGoogle Scholar
  34. Zumstein E, Moletta R, Godon JJ (2000) Examination of two years of community dynamics in an anaerobic bioreactor using fluorescence polymerase chain reaction (PCR) single-strand conformation polymorphism analysis. Environ Microbiol 2:69–78CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • C. Hwang
    • 1
  • W.-M. Wu
    • 2
  • T. J. Gentry
    • 3
  • J. Carley
    • 3
  • S. L. Carroll
    • 3
  • C. Schadt
    • 3
  • D. Watson
    • 3
  • P. M. Jardine
    • 3
  • J. Zhou
    • 3
  • R. F. Hickey
    • 4
  • C. S. Criddle
    • 2
  • M. W. Fields
    • 1
  1. 1.Department of MicrobiologyMiami UniversityOxfordUSA
  2. 2.Department of Civil and Environmental EngineeringStanford UniversityStanfordUSA
  3. 3.Environmental Sciences DivisionOak Ridge National LaboratoryOak RidgeUSA
  4. 4.Ecovation, Inc.VictorUSA

Personalised recommendations