Advertisement

Applied Microbiology and Biotechnology

, Volume 69, Issue 5, pp 485–492 | Cite as

The use of microorganisms for the formation of metal nanoparticles and their application

  • Deendayal Mandal
  • Mark E. Bolander
  • Debabrata Mukhopadhyay
  • Gobinda Sarkar
  • Priyabrata Mukherjee
Mini-Review

Abstract

Nanomaterials are at the leading edge of the rapidly developing field of nanotechnology. The development of reliable experimental protocols for the synthesis of nanomaterials over a range of chemical compositions, sizes, and high monodispersity is one of the challenging issues in current nanotechnology. In the context of the current drive to develop green technologies in material synthesis, this aspect of nanotechnology is of considerable importance. Biological systems, masters of ambient condition chemistry, synthesize inorganic materials that are hierarchically organized from the nano- to the macroscale. Recent studies on the use of microorganisms in the synthesis of nanoparticles are a relatively new and exciting area of research with considerable potential for development. This review describes a brief overview of the current research worldwide on the use of microorganisms in the biosynthesis of metal nanoparticles and their applications.

Keywords

Silver Nanoparticles Gold Nanoparticles Fungal Biomass Verticillium Magnetotactic Bacterium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We would like to thank S. Senapati, Dr. A. Ahmad, Dr. M.I. Khan, Dr. M. Sastry, and Dr. R. Kumar for their enthusiastic contributions to the experimental work and for their helpful discussions. We also thank Prof. A. Steinbuchel for supporting this review.

References

  1. Ahmad A, Mukherjee P, Mandal D, Senapati S, Khan MI, Kumar R, Sastry M (2002) Enzyme mediated extracellular synthesis of CdS nanoparticles by the fungus, Fusarium oxysporum. J Am Chem Soc 124:12108–12109CrossRefPubMedGoogle Scholar
  2. Ahmad A, Senapati S, Khan MI, Kumar R, Sastry M (2003a) Extracellular biosynthesis of monodisperse gold nanoparticles by a novel extremophilic actinomycete, Thermomonospora sp. Langmuir 19:3550–3553CrossRefGoogle Scholar
  3. Ahmad A, Senapati S, Khan MI, Ramani R, Srinivas V, Sastry M (2003b) Intracellular synthesis of gold nanoparticles by a novel alkalotolerant actinomycete, Rhodococcus species. Nanotechnology 14:824–828CrossRefGoogle Scholar
  4. Ahmad A, Mukherjee P, Senapati S, Mandal D, Khan MI, Kumar R, Sastry M (2003c) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Collect Surf B 28:313–318CrossRefGoogle Scholar
  5. Bansal V, Rautaray D, Ahmad A, Sastry M (2004) Biosynthesis of zirconia nanoparticles using the fungus Fusarium oxysporum. J Mater Chem 14:3303–3305CrossRefGoogle Scholar
  6. Beveridge TJ, Murray RGE (1980) Site of metal deposition in the cell wall of Bacillus subtilis. J Bacteriol 141:876–887PubMedGoogle Scholar
  7. Beveridge TJ, Hughes MN, Lee H, Leung KT, Poole RK, Savvaidis I, Silver S, Trevors JT (1997) Metal–microbe interactions: contemporary approaches. Adv Microb Physiol 38:178–243Google Scholar
  8. Chan WCW, Maxwell DJ, Gao X, Bailey RE, Han M, Nie S (2002) Luminescent quantum dots for multiplexed biological detection and imaging. Curr Opin Biotechnol 13:40–46CrossRefPubMedGoogle Scholar
  9. Chandrasekharan N, Kamat PV (2000) Improving the photoelectrochemical performance of nanostructured TiO2 films by adsorption of gold nanoparticles. J Phys Chem B 104:10851–10857CrossRefGoogle Scholar
  10. Cunningham DP, Lundie LL (1993) Precipitation of cadmium by Clostridium thermoaceticum. Appl Environ Microbiol 59:7–14PubMedGoogle Scholar
  11. Dameron CT, Reese RN, Mehra RK, Kortan AR, Carroll PJ, Steigerwald ML, Brus LE, Winge DR (1989) Biosynthesis of cadmium sulfide quantum semiconductor crystallites. Nature 338:596–597CrossRefGoogle Scholar
  12. Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346CrossRefPubMedGoogle Scholar
  13. Dickson DPE (1999) Nanostructured magnetism in living systems. J Magn Magn Mater 203:46–49CrossRefGoogle Scholar
  14. Fortin D, Beveridge TJ (2000) From biology to biotechnology and medical applications. In: Baeuerien E (ed) Biomineralization, Wiley-VCH, Weinheim, pp 7–22Google Scholar
  15. Gole A, Dash C, Ramakrishnan V, Sainkar SR, Mandale AB, Rao M, Sastry M (2001) Pepsin–gold colloid conjugates: preparation, characterization, and enzymatic activity. Langmuir 17:1674–1679CrossRefGoogle Scholar
  16. Grunberg K, Wawer C, Tebo BM, Schuler D (2001) A large gene cluster encoding several magnetosome proteins is conserved in different species of magnetotactic bacteria. Appl Environ Microbiol 67:4573–4582PubMedCrossRefGoogle Scholar
  17. Hosea M, Greene B, Mcpherson R, Henzl M, Alexander MD, Darnall DW (1986) Accumulation of elemental gold on the alga Chlorella vulgaris. Inorg Chim Acta 123:161–165CrossRefGoogle Scholar
  18. Joerger R, Klaus T, Granqvist C-G (2000) Biologically produced silver–carbon composite materials for optically functional thin film coatings. Adv Mater 12:407–409CrossRefGoogle Scholar
  19. Klaus T, Joerger R, Olsson E, Granqvist C-G (1999) Silver-based crystalline nanoparticles, microbially fabricated. Proc Natl Acad Sci U S A 96:13611–13614CrossRefPubMedGoogle Scholar
  20. Klaus-Joerger T, Joerger R, Olsson E, Granqvist C-G (2001) Bacteria as workers in the living factory: metal-accumulating bacteria and their potential for materials science. Trends Biotechnol 19:15–20CrossRefPubMedGoogle Scholar
  21. Konishi Y, Nomura T, Tsukiyama T, Saitoh N (2004) Microbial preparation of gold nanoparticles by anaerobic bacterium. Trans Mater Res Soc Jpn 29:2341–2343Google Scholar
  22. Kowshik M, Vogel W, Urban J, Kulkarni SK, Paknikar KM (2002a) Microbial synthesis of semiconductor PbS nanocrystallites. Adv Mater 14:815–818CrossRefGoogle Scholar
  23. Kowshik M, Deshmukh N, Vogel W, Urban J, Kulkarni SK, Paknikar KM (2002b) Microbial synthesis of semiconductor CdS nanoparticles, their characterization, and their use in the fabrication of an ideal diode. Biotechnol Bioeng 78:583–588CrossRefPubMedGoogle Scholar
  24. Kowshik M, Ashtaputre S, Kharrazi S, Vogel W, Urban J, Kulkarni SK, Paknikar KM (2003) Extracellular synthesis of silver nanoparticles by a silver-tolerant yeast strain MKY3. Nanotechnology 14:95–100CrossRefGoogle Scholar
  25. Kroger N, Deutzmann R, Sumper M (1999) Polycationic peptides from diatom biosilica that direct silica nanosphere formation. Science 286:1129–1132CrossRefPubMedGoogle Scholar
  26. Krolikowska A, Kudelski A, Michota A, Bukowska J (2003) SERS studies on the structure of thioglycolic acid monolayers on silver and gold. Surf Sci 532:227–232CrossRefGoogle Scholar
  27. Kumar A, Mandal S, Selvakannan PR, Parischa R, Mandale AB, Sastry M (2003) Investigation into the interaction between surface-bound alkylamines and gold nanoparticles. Langmuir 19:6277–6282CrossRefGoogle Scholar
  28. Labrenz M, Druschel GK, Thomsen-Ebert T, Gilbert B, Welch SA, Kemner KM, Logan GA, Summons RE, Stasio GD, Bond PL, Lai B, Kelly SD, Banfield JF (2000) Formation of sphalerite (ZnS) deposits in natural biofilms of sulfate-reducing bacteria. Science 290:1744–1747CrossRefPubMedGoogle Scholar
  29. Lee H, Purdon AM, Chu V, Westervelt RM (2004) Controlled assembly of magnetic nanoparticles from magnetotactic bacteria using microelectromagnets. Nano Lett 4:995–998CrossRefGoogle Scholar
  30. Lovley DR, Stolz JF, Nord GL, Philips EJP (1987) Anaerobic production of magnetite by a dissimilatory iron-reducing microorganism. Nature 330:252–254CrossRefGoogle Scholar
  31. Lowenstam HA (1981) Minerals formed by organisms. Science 211:1126–1131PubMedCrossRefGoogle Scholar
  32. Mann S (1993) Molecular tectonics in biomineralization and biomimetic materials chemistry. Nature 365:499-505CrossRefGoogle Scholar
  33. Mann S (ed) (1996) Biomimetic materials chemistry. VCH, New York, pp 1-40Google Scholar
  34. Mehra RK, Winge DR (1991) Metal ions resistance in fungi: molecular mechanisms and their regulated expression. J Cell Biochem 45:30-40CrossRefPubMedGoogle Scholar
  35. Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Ramani R, Parischa R, Ajayakumar PV, Alam M, Sastry M, Kumar R (2001a) Bioreduction of AuCl4 ions by the fungus, Verticillium sp. and surface trapping of the gold nanoparticles formed. Angew Chem Int Ed 40:3585-3588CrossRefGoogle Scholar
  36. Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Parischa R, Ajayakumar PV, Alam M, Kumar R, Sastry M (2001b) Fungus mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis. Nano Lett 1:515-519CrossRefGoogle Scholar
  37. Mukherjee P, Senapati S, Mandal D, Ahmad A, Khan MI, Kumar R, Sastry M (2002) Extracellular synthesis of gold nanoparticles by the fungus Fusarium oxysporum. Chembiochem 3:461-463CrossRefPubMedGoogle Scholar
  38. Nair B, Pradeep T (2002) Coalescence of nanoclusters and formation of submicron crystallites assisted by Lactobacillus strains. Cryst Growth Des 2:293-298CrossRefGoogle Scholar
  39. Oliver S, Kupermann A, Coombs N, Lough A, Ozin GA (1995) Lamellar aluminophosphates with surface patterns that mimic diatom and radiolarian microskeletons. Nature 378:47-50CrossRefGoogle Scholar
  40. Peto G, Molnar GL, Paszti Z, Geszti O, Beck A, Guczi L (2002) Electronic structure of gold nanoparticles deposited on SiOx/Si(100). Mater Sci Eng C 19:95-99CrossRefGoogle Scholar
  41. Philipse AP, Maas D (2002) Magnetic colloids from magnetotactic bacteria: chain formation and colloidal stability. Langmuir 18:9977-9984CrossRefGoogle Scholar
  42. Pum D, Sleytr UB (1999) The application of bacterial S-layers in molecular nanotechnology. Trends Biotechnol 17:8-12CrossRefGoogle Scholar
  43. Reese RN, Winge DR (1988) Sulfide stabilization of the cadmium–γ-glutamyl peptide complex of Schizosaccharomyces pombe. J Biol Chem 263:12832-12835PubMedGoogle Scholar
  44. Roh Y, Lauf RJ, McMillan AD, Zhang C, Rawn CJ, Bai J, Phelps TJ (2001) Microbial synthesis and characterization of metal-substituted magnetites. Solid State Commun 118:529-534CrossRefGoogle Scholar
  45. Sastry M, Ahmad A, Khan MI, Kumar R (2004) Microbial nanoparticle production. In: Niemeyer CM, Mirkin CA (eds) Nanobiotechnology, Wiley-VCH, Weinheim, Germany, pp 126-135CrossRefGoogle Scholar
  46. Scarano G, Morelli E (2003) Properties of phytochelatin-coated CdS nanocrystallites formed in a marine phytoplanktonic alga (Phaeodactylum tricornutum, Bohlin) in response to Cd. Plant Sci 165:803-810CrossRefGoogle Scholar
  47. Senapati S, Ahmad A, Khan MI, Sastry M, Kumar R (2005) Extracellular biosynthesis of bimetallic Au–Ag alloy nanoparticles. Small 1:517-520CrossRefGoogle Scholar
  48. Schuler D (1999) Formation of magnetosomes in magnetotactic bacteria. J Mol Microbiol Biotechnol 1:79-86PubMedGoogle Scholar
  49. Shankar SS, Ahmad A, Parischa R, Sastry M (2003) Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes. J Mater Chem 13:1822-1826CrossRefGoogle Scholar
  50. Silver S (1996) Bacterial resistance to toxic metal ions—a review. Gene 179:9-19CrossRefPubMedGoogle Scholar
  51. Silver S (2003) Bacterial silver resistance: molecular biology and uses and misuses of silver compounds. FEMS Microbiol Rev 27:341-353CrossRefPubMedGoogle Scholar
  52. Simkiss K, Wilbur KM (1989) Biomineralization. Academic press, New YorkGoogle Scholar
  53. Slawson RM, Van Dyke MI, Lee H, Trevor JT (1992) Germanium and silver resistance, accumulation and toxicity in microorganisms. Plasmid 27:73-79CrossRefGoogle Scholar
  54. Sleytr UB, Messner P, Pum D, Sara M (1999) Crystalline bacterial cell surface layers (S layers): from supramolecular cell structure to biomimetics and nanotechnology. Angew Chem Int Ed 38:1035-1054CrossRefGoogle Scholar
  55. Southam G, Beveridge TJ (1994) The in vitro formation of placer gold by bacteria. Geochim Cosmochim Acta 58:4527-4530CrossRefGoogle Scholar
  56. Southam G, Beveridge TJ (1996) The occurrence of sulfur and phosphorus within bacterially derived crystalline and pseudocrystalline octahedral gold formed in vitro. Geochim Cosmochim Acta 60:4369–4376CrossRefGoogle Scholar
  57. Spring H, Schleifer KH (1995) Diversity of magnetotactic bacteria. Syst Appl Microbiol 18:147-153Google Scholar
  58. Stephen JR, Macnaughton SJ (1999) Developments in terrestrial bacterial remediation of metals. Curr Opin Biotechnol 10:230-233CrossRefPubMedGoogle Scholar
  59. Sweeney RY, Mao C, Gao X, Burt JL, Belcher AM, Georgiou G, Iverson BL (2004) Bacterial biosynthesis of cadmium sulfide nanocrystals. Chem Biol 11:1553-1559CrossRefPubMedGoogle Scholar
  60. Watson JHP, Ellwood DC, Soper AK, Charnock J (1999) Nanosized strongly-magnetic bacterially-produced iron sulfide materials. J Magn Magn Mater 203:69-72CrossRefGoogle Scholar
  61. Watson JHP, Croudace IW, Warwick PE, James PAB, Charnock JM, Ellwood DC (2001) Adsorption of radioactive metals by strongly magnetic iron sulfide nanoparticles produced by sulfate-reducing bacteria. Sep Sci Technol 36:2571-2607CrossRefGoogle Scholar
  62. Zhang C, Vali H, Romanek CS, Phelps TJ, Liu SV (1998) Formation of single-domain magnetite by a thermophilic bacterium. Am Mineral 83:1409–1418Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Deendayal Mandal
    • 1
  • Mark E. Bolander
    • 1
  • Debabrata Mukhopadhyay
    • 2
  • Gobinda Sarkar
    • 1
  • Priyabrata Mukherjee
    • 2
  1. 1.Department of OrthopedicsMayo Clinic and FoundationRochesterUSA
  2. 2.Department of Biochemistry and Molecular BiologyMayo Clinic and FoundationRochesterUSA

Personalised recommendations