Applied Microbiology and Biotechnology

, Volume 69, Issue 1, pp 1–8 | Cite as

Biotechnological production of amino acids and derivatives: current status and prospects

  • Wolfgang Leuchtenberger
  • Klaus Huthmacher
  • Karlheinz Drauz
Mini-Review

Abstract

For almost 50 years now, biotechnological production processes have been used for industrial production of amino acids. Market development has been particularly dynamic for the flavor-enhancer glutamate and the animal feed amino acids l-lysine, l-threonine, and l-tryptophan, which are produced by fermentation processes using high-performance strains of Corynebacterium glutamicum and Escherichia coli from sugar sources such as molasses, sucrose, or glucose. But the market for amino acids in synthesis is also becoming increasingly important, with annual growth rates of 5–7%. The use of enzymes and whole cell biocatalysts has proven particularly valuable in production of both proteinogenic and nonproteinogenic l-amino acids, d-amino acids, and enantiomerically pure amino acid derivatives, which are of great interest as building blocks for active ingredients that are applied as pharmaceuticals, cosmetics, and agricultural products. Nutrition and health will continue to be the driving forces for exploiting the potential of microorganisms, and possibly also of suitable plants, to arrive at even more efficient processes for amino acid production.

References

  1. Ajinomoto (2003) 1H-FY2003 market and other information. Available from World Wide Web: http://www.ajinomoto.com/ar/i_r/pdf/presentation/1H-2003_mkt_info.pdf. Cited 15 April 2005
  2. Ajinomoto (2004) Feed-use amino acids business. Available from World Wide Web: http://www.ajinomoto.co.jp/ir/pdf/fact/feeduse_amino_oct2003.pdf??company Down=kankyoPdfFactfeeduse_amino_oct2003. Cited 15 April 2005
  3. Alvarez I, Geli MI, Pimentel E, Ludevid D, Torrent M (1998) Lysine-rich gamma-zeins are secreted in transgenic Arabidopsis plants. Planta 205(3):420–427CrossRefPubMedGoogle Scholar
  4. Aragao FJL, Barros LMG, Sousa MV, Grossi de Sá MF, Almeida ERP, Gander ES, Rech EL (1999) Expression of a methionine-rich storage albumin from the Brazil nut (Bertholletia excelsa HBK, Lecythidaceae) in transgenic bean plants (Phaseolus vulgaris L., Fabaceae). Genet Mol Biol 22:445–449. Available from World Wide Web: http://www.scielo.br/scielo.php?script=sci_arttext and pid=S14154757199900030 0026 and lng=en and nrm=iso. Cited 15 April 2005
  5. Bercovici D, Fuller F (1995) Industrial amino acids in nonruminant animal nutrition. In: Wallace RJ, Chesson A (eds) Biotechnology in animal feeds and animal feeding, VCH, Weinheim pp 93–113Google Scholar
  6. Binder W, Friedrich H, Lotter H, Tanner H, Holldorf H, Leuchtenberger W (1995) Tierfuttersupplement auf der Basis einer Aminosäure und Verfahren zu dessen Herstellung (09.09.1992/ 31.08.1995), Patent EP 533039Google Scholar
  7. Brown K (2005) B-132R amino acids: highlighting synthesis applications. Available from World Wide Web: http://www.bccresearch.com/biotech/B132R.html. Cited 15 April 2005
  8. Calton GJ (1992) The enzymatic production of l-aspartic acid. In: Rozzell JD, Wagner F (eds) Biocatalytic production of amino acids and derivatives, Hanser, München, pp 3–21Google Scholar
  9. Calton GJ (1992) The enzymatic production of l-alanine. In: Rozzell JD, Wagner F (eds) Biocatalytic production of amino acids and derivatives, Hanser, München, pp 59–74Google Scholar
  10. Chibata J (1978) Immobilized enzymes, Kodansha-Halsted Press, TokyoGoogle Scholar
  11. Cordwell SJ (1999) Microbial genomes and “missing” enzymes: redefining biochemical pathways. Arch Microbiol 172:269CrossRefPubMedGoogle Scholar
  12. Debabov VG (2003) The threonine story. In: Scheper T, Faurie R, Thommel J (eds) Advances in biochemical engineering/biotechnology, vol 79. Springer, Berlin Heidelberg New York, pp 59–112Google Scholar
  13. de Graaf AA, Eggeling L, Sahm H (2001) Metabolic engineering for l-lysine production by Corynebacterium glutamicum. In: Scheper T, Nielsen J (eds) Advances in biochemical engineering/biotechnology, vol 73. Springer, Berlin Heidelberg New York, pp 9–29Google Scholar
  14. Degussa (2003) German Future Prize awarded to Prof. Dr. Maria-Regina Kula. Elements 02, pp 20. Available from World Wide Web: http://www.degussa.de/de/innovationen/elements.Par.0008.downloads.0006. myFile.tmp/elements_02_en.pdf. Cited 15 April 2005
  15. Drauz K, Waldmann H (2002) Enzyme catalysis in organic synthesis: a comprehensive handbook 2nd edn. Wiley-VCH, WeinheimGoogle Scholar
  16. Eichhorn U, Bommarius AS, Drauz K, Jakubke H-D (1997) Synthesis of dipeptides by suspension-to-suspension conversion via thermolysin catalysis—from analytical to preparative scale. J Pept Science 3: 245–251CrossRefGoogle Scholar
  17. Groeger H, Drauz K (2003) Methods for the enantioselective biocatalytic production of l-amino acids on an industrial scale. In: Blaser H-U, Schmidt E (eds) Asymmetric catalysis on industrial scale. Wiley-VCH, Weinheim, pp 131–147Google Scholar
  18. Ikeda M (2003) Amino acid production processes. In: Scheper T, Faurie R, Thommel J (eds) Advances in biochemical engineering/ biotechnology, vol 79. Springer, Berlin Heidelberg New York, pp 1–35Google Scholar
  19. Ikeda M, Katsumata R (1999) Hyperproduction of tryptophan by Corynebacterium glutamicum with the modified pentose phosphate pathway. Appl Environ Microbiol 65:2497–2502PubMedGoogle Scholar
  20. Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, Dusch N, Eggeling L, Eikmanns BJ, Gaigalat L, Goesmann A, Hartmann M, Huthmacher K, Kramer R, Linke B, McHardy AC, Meyer F, Moeckel B, Pfefferle W, Puehler A, Rey DA, Ruckert C, Rupp O, Sahm H, Wendisch VF, Wiegrabe I, Tauch A (2003) The complete Corynebacterium glutamicum ATCC 13032 genome sequence. J Biotechnol 104: 5–25PubMedGoogle Scholar
  21. Kimura E (2003) Metabolic engineering of glutamate production. In: Scheper T, Faurie R, Thommel J (eds) Advances in biochemical engineering/biotechnology, vol 79. Springer, Berlin Heidelberg New York, pp 37–57Google Scholar
  22. Kinoshita S, Ukada S, Shimono M (1957) Studies on the amino acid fermentation. J Gen Appl Microbiol 3: 193–205Google Scholar
  23. Leuchtenberger W (1996) Amino acids—technical production and use. In: Rehm H-J, Reed G, Pühler A, Stadler P (eds) Biotechnology 2nd edn, vol 6. Products of primary metabolism. VCH, Weinheim, pp 465–502Google Scholar
  24. Maerz U (2005) GA-103R World markets for fermentation ingredients. Available from World Wide Web: http://www.bccresearch.com/food/GA103R.html. Cited 15 April 2005
  25. May O, Nguyen P, Arnold F (2000) Inverting enantioselectivity by directed evolution of hydantoinase for improved production of l-methionine. Nat Biotechnol 18: 317–320CrossRefPubMedGoogle Scholar
  26. May O, Verseck S, Bommarius A, Drauz K (2002) Development of dynamic kinetic resolution processes for biocatalytic production of natural and nonnatural l-amino acids. Org. Process Res. Dev. 6:452–457CrossRefGoogle Scholar
  27. Meyer HP, Shaw NM, Kiener A (2003) What have we learned during 20 years of industrial biotransformations? 6th International Symposium on Biocatalysis and Biotranformations, Olomouc, Czech RepublicGoogle Scholar
  28. Ngo J, Rabasseda X, Castaner J (1997) Eletriptan. Antimigraine 5-HT1D agonist. Drugs Future 22: 221–224Google Scholar
  29. Pae KM, Ryo OH, Yoon HS, Schin CS (1992) Kinetic properties of a l-cysteine desulfhydrase-deficient mutant in the enzymatic formation of l-cysteine from dl-ATC. Biotechnol Lett 14:1143–1148CrossRefGoogle Scholar
  30. Pfefferle W, Moeckel B, Bathe B, Marx A (2003) Biotechnological manufacture of lysine. In: Scheper T, Faurie R, Thommel J (eds) Advances in biochemical engineering/biotechnology, vol 79. Springer, Berlin Heidelberg New York, pp 59–112Google Scholar
  31. Shaw NM, Robins KT, Kiener A (2003) Lonza: 20 years of biotransformations. Adv Synth Catal 345: 425–435CrossRefGoogle Scholar
  32. Sijbesma F, Schepens H (2004) White biotechnology: gateway to a more sustainable future. EuropaBio, Brussels pp 1–16. Available from World Wide Web: http://www.europabio.org/documents/100403/Innenseiten_final_screen.pdf. Cited 15 April 2005
  33. Slusarczyk H, Felber S, Kula M-R, Pohl M (2000) Stabilization of NAD dependent formate dehydrogenase by site directed mutagenesis of cystein residues. Eur J Biochem 207,1280–1289CrossRefGoogle Scholar
  34. Wacker (2004) Cysteine from Wacker–Fermentation synthesis for the highest demand. Available from World Wide Web: http://www.wacker.com/internet/webcache/de_DE/PTM/BioTec/AminoAcids/C ysteine/Cysteine_USA_Sept_2004_fin.pdf. Cited 15 April 2005
  35. Weckbecker C, Hummel W (2004) Making L fom D—in a single cell. Elements 06: 34–37. Available from World Wide Web: http://www.degussa.de/de/innovationen/elements.Par.0008.downloads.0002. myFile.tmp/elements_06_en.pdf. Cited 15 April 2005Google Scholar
  36. Wendisch VF, Marx A, Buchholz S (2005) Towards integration of biorefinary and microbial amino acid production. In: biorefineries, biobased industrial processes and products. Wiley-VCH, Weinheim (in press)Google Scholar
  37. Woeltinger J, Karau A, Leuchtenberger W, Drauz K (2005) Membrane reactors at Degussa. In: Scheper T (ed) Advances in biochemical engineering/biotechnology, vol 92. Springer, Berlin Heidelberg New York, pp 289–316Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Wolfgang Leuchtenberger
    • 1
  • Klaus Huthmacher
    • 2
  • Karlheinz Drauz
    • 2
  1. 1.Degussa-StiftungDüsseldorfGermany
  2. 2.Degussa AGHanau-WolfgangGermany

Personalised recommendations