Applied Microbiology and Biotechnology

, Volume 68, Issue 6, pp 718–725

Production of rhamnolipids by Pseudomonas aeruginosa

  • Gloria Soberón-Chávez
  • François Lépine
  • Eric Déziel
Mini-Review

Abstract

Pseudomonas aeruginosa produces glycolipidic surface-active molecules (rhamnolipids) which have potential biotechnological applications. Rhamnolipids are produced by P. aeruginosa in a concerted manner with different virulence-associated traits. Here, we review the rhamnolipids biosynthetic pathway, showing that it has metabolic links with numerous bacterial products such as alginate, lipopolysaccharide, polyhydroxyalkanoates, and 4-hydroxy-2-alkylquinolines (HAQs). We also discuss the factors controlling the production of rhamnolipids and the proposed roles this biosurfactant plays in P. aeruginosa lifestyle.

References

  1. Abalos A, Pinazo A, Infante MR, Casals M, Garcia F, Manresa A (2001) Physicochemical and antimicrobial properties of new rhamnolipids produced by Pseudomonas aeruginosa AT10 from soybean oil refinery wastes. Langmuir 17:1367–1371CrossRefGoogle Scholar
  2. Al-Dujaili AH (1976) Toxic activity against alveolar macrophages of products of Pseudomonas aeruginosa isolated from respiratory and non-respiratory sites. J Hyg (Lond) 77:211–220Google Scholar
  3. Al-Tahhan RA, Sandrin TR, Bodour AA, Maier RM (2000) Rhamnolipid-induced removal of lipopolysaccharide from Pseudomonas aeruginosa: effect on cell surface properties and interaction with hydrophobic substrates. Appl Environ Microbiol 66:3262–3268CrossRefPubMedGoogle Scholar
  4. Arino S, Marchal R, Vandecasteele J-P (1996) Identification and production of a rhamnolipidic biosurfactant by a Pseudomonas species. Appl Microbiol Biotechnol 45:162–168CrossRefGoogle Scholar
  5. Barbuzzi T et al (2004) Microbial synthesis of poly(3-hydroxyalkanoates) by Pseudomonas aeruginosa from fatty acids: identification of higher monomer units and structural characterization. Biomacromolecules 5:2469–2478CrossRefPubMedGoogle Scholar
  6. Beal R, Betts WB (2000) Role of rhamnolipid biosurfactants in the uptake and mineralization of hexadecane in Pseudomonas aeruginosa. J Appl Microbiol 89:158–168CrossRefPubMedGoogle Scholar
  7. Bedard M, McClure CD, Schiller NL, Francoeur C, Cantin A, Denis M (1993) Release of interleukin-8, interleukin-6, and colony-stimulating factors by upper airway epithelial cells: implication for cystic fibrosis. Am J Respir Cell Mol Biol 9:455–462PubMedGoogle Scholar
  8. Bredenbruch F, Nimtz M, Wray V, Morr M, Müller R, Häussler S (2005) Biosynthetic pathway of Pseudomonas aeruginosa 4-hydroxy-2-alkylquinolines. J Bacteriol 187:3630–3635CrossRefPubMedGoogle Scholar
  9. Burger MM, Glaser L, Burton RM (1966) Formation of rhamnolipids of Pseudomonas aeruginosa. Methods Enzymol 8:441–445CrossRefGoogle Scholar
  10. Calfee MW, Shelton JG, McCubrey JA, Pesci EC (2005) Solubility and bioactivity of the Pseudomonas quinolone signal are increased by a Pseudomonas aeruginosa-produced surfactant. Infect Immun 73:878–882CrossRefPubMedGoogle Scholar
  11. Campos-García J, Caro AD, Nájera R, Miller-Maier RM, Al-Tahhan RA, Soberón-Chávez G (1998) The Pseudomonas aeruginosa rhlG gene encodes an NADPH-dependent β-ketoacyl reductase which is specifically involved in rhamnolipid synthesis. J Bacteriol 180:4442–4451PubMedGoogle Scholar
  12. Chayabutra C, Wu J, Ju LK (2001) Rhamnolipid production by Pseudomonas aeruginosa under denitrification: effects of limiting nutrients and carbon substrates. Biotechnol Bioeng 72:25–33PubMedCrossRefGoogle Scholar
  13. Cosson P et al (2002) Pseudomonas aeruginosa virulence analyzed in a Dictyostelium discoideum host system. J Bacteriol 184:3027–3033CrossRefPubMedGoogle Scholar
  14. Costerton JW (1980) Pseudomonas aeruginosa in nature and disease. In: Sabath CD (ed) Pseudomonas aeruginosa: the organism, diseases it causes and their treatment. Hans Huber Publishers, Bern, Switzerland pp 15–24Google Scholar
  15. Coyne MJ Jr, Russell KS, Coyle CL, Goldberg JB (1994) The Pseudomonas aeruginosa algC gene encodes phosphoglucomutase, required for the synthesis of a complete lipopolysaccharide core. J Bacteriol 176:3500–3507PubMedGoogle Scholar
  16. Davey ME, Caiazza NC, O'Toole GA (2003) Rhamnolipid surfactant production affects biofilm architecture in Pseudomonas aeruginosa PAO1. J Bacteriol 185:1027–1036CrossRefPubMedGoogle Scholar
  17. Déziel É, Paquette G, Villemur R, Lépine F, Bisaillon J-G (1996) Biosurfactant production by a soil Pseudomonas strain growing on polycyclic aromatic hydrocarbons. Appl Environ Microbiol 62:1908–1912Google Scholar
  18. Déziel E, Lépine F, Dennie D, Boismenu D, Mamer OA, Villemur R (1999) Liquid chromatography/mass spectrometry analysis of mixtures of rhamnolipids produced by Pseudomonas aeruginosa strain 57RP grown on mannitol or naphthalene. Biochim Biophys Acta 1440:244–252PubMedGoogle Scholar
  19. Déziel E, Lépine F, Milot S, Villemur R (2003) rhlA is required for the production of a novel biosurfactant promoting swarming motility in Pseudomonas aeruginosa: 3-(3-hydroxyalkanoyloxy)alkanoic acids (HAAs), the precursors of rhamnolipids. Microbiology 149:2005–2013CrossRefPubMedGoogle Scholar
  20. Déziel E et al (2004) Analysis of Pseudomonas aeruginosa 4-hydroxy-2-alkylquinolines (HAQs) reveals a role for 4-hydroxy-2-heptylquinoline in cell-to-cell communication. Proc Natl Acad Sci U S A 101:1339–1344CrossRefPubMedGoogle Scholar
  21. Déziel E et al (2005) The contribution of MvfR to Pseudomonas aeruginosa pathogenesis and quorum sensing circuitry regulation: multiple quorum sensing-regulated genes are modulated without affecting lasRI, rhlRI or the production of N-acyl-L-homoserine lactones. Mol Microbiol 55:998–1014CrossRefPubMedGoogle Scholar
  22. Fujita K, Akino T, Yoshioka H (1988) Characteristics of the heat-stable extracellular hemolysin from Pseudomonas aeruginosa. Infect Immun 56:1385–1387PubMedGoogle Scholar
  23. Fung DC, Somerville M, Richardson PS, Sheehan JK (1995) Mucus glycoconjugate complexes released from feline trachea by bacterial toxin. Am J Respir Cell Mol Biol 12:296–306PubMedGoogle Scholar
  24. Guerra-Santos LH, Käppeli O, Fiechter A (1984) Pseudomonas aeruginosa biosurfactant production in continuous culture with glucose as carbon source. Appl Environ Microbiol 48:301–305PubMedGoogle Scholar
  25. Guerra-Santos LH, Käppeli O, Fiechter A (1986) Dependence of Pseudomonas aeruginosa continuous culture biosurfactant production on nutritional and environmental factors. Appl Microbiol Biotechnol 24:443–448CrossRefGoogle Scholar
  26. Gunther NW IV, Nunez A, Fett W, Solaiman DK (2005) Production of rhamnolipids by Pseudomonas chlororaphis, a nonpathogenic bacterium. Appl Environ Microbiol 71:2288–2293CrossRefPubMedGoogle Scholar
  27. Hastie AT, Hingley ST, Higgins ML, Kueppers F, Shryock T (1986) Rhamnolipid from Pseudomonas aeruginosa inactivates mammalian tracheal ciliary axonemes. Cell Motil Cytoskeleton 6:502–509CrossRefPubMedGoogle Scholar
  28. Häussler S, Nimtz M, Domke T, Wray V, Steinmetz I (1998) Purification and characterization of a cytotoxic exolipid of Burkholderia pseudomallei. Infect Immun 66:1588–1593PubMedGoogle Scholar
  29. Häussler S, Rohde M, von Neuhoff N, Nimtz M, Steinmetz I (2003) Structural and functional cellular changes induced by Burkholderia pseudomallei rhamnolipid. Infect Immun 71:2970–2975CrossRefPubMedGoogle Scholar
  30. Hentzer M et al (2003) Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. EMBO J 22:3803–3815CrossRefPubMedGoogle Scholar
  31. Hingley ST, Hastie A, Kueppers F, Higgins ML, Weinbaum G, Shryock T (1986) Effect of ciliostatic factors from Pseudomonas aeruginosa on rabbit respiratory cilia. Infect Immun 51:254–262PubMedGoogle Scholar
  32. Itoh S, Suzuki T (1972) Effect of rhamnolipids on growth of Pseudomonas aeruginosa mutant deficient in n-paraffin-utilizing ability. Agric Biol Chem 36:2233–2235Google Scholar
  33. Itoh S, Honda H, Tomita F, Suzuki T (1971) Rhamnolipids produced by Pseudomonas aeruginosa grown on n-paraffin (mixture of C12, C13 and C14 fractions). J Antibiot 24:855–859PubMedGoogle Scholar
  34. Jarvis FG, Johnson MJ (1949) A glycolipide produced by Pseudomonas aeruginosa. J Am Chem Soc 71:4124–4126CrossRefGoogle Scholar
  35. Jendrossek D, Schirmer A, Schlegel HG (1996) Biodegradation of polyhydroxyalkanoic acids. Appl Microbiol Biotechnol 46:451–463CrossRefPubMedGoogle Scholar
  36. Johnson MK, Allen JH (1978) The role of hemolysin in corneal infections with Pseudomonas aeruginosa. Invest Ophthalmol Vis Sci 17:480–483PubMedGoogle Scholar
  37. Johnson MK, Boese-Marrazzo D (1980) Production and properties of heat-stable extracellular hemolysin from Pseudomonas aeruginosa. Infect Immun 29:1028–1033PubMedGoogle Scholar
  38. Juhas M, Eberl L, Tummler B (2005) Quorum sensing: the power of cooperation in the world of Pseudomonas. Environ Microbiol 7:459–471CrossRefPubMedGoogle Scholar
  39. Kanthakumar K et al (1996) The effect of bacterial toxins on levels of intracellular adenosine nucleotides and human ciliary beat frequency. Pulm Pharmacol 9:223–230CrossRefPubMedGoogle Scholar
  40. Kim EJ, Sabra W, Zeng AP (2003) Iron deficiency leads to inhibition of oxygen transfer and enhanced formation of virulence factors in cultures of Pseudomonas aeruginosa PAO1. Microbiology 149:2627–2634CrossRefPubMedGoogle Scholar
  41. Koch AK, Käppeli O, Fiechter A, Reiser J (1991) Hydrocarbon assimilation and biosurfactant production in Pseudomonas aeruginosa mutants. J Bacteriol 173:4212–4219PubMedGoogle Scholar
  42. Köhler T, Curty LK, Barja F, Van Delden C, Pechère J-C (2000) Swarming of Pseudomonas aeruginosa is dependent on cell-to-cell signaling and requires flagella and pili. J Bacteriol 182:5990–5996CrossRefPubMedGoogle Scholar
  43. Kownatzki R, Tummler B, Doring G (1987) Rhamnolipid of Pseudomonas aeruginosa in sputum of cystic fibrosis patients. Lancet 1:1026–1027CrossRefGoogle Scholar
  44. Kurioka S, Liu PV (1967) Effect of the hemolysin of Pseudomonas aeruginosa on phosphatides and on phospholipase c activity. J Bacteriol 93:670–674PubMedGoogle Scholar
  45. Lam JS (2004) Lipopolysaccharides of Pseudomonas aeruginosa. In: Ramos JL (ed) The pseudomonads. Biosynthesis of macromolecules and molecular metabolism. Kluwer/Plenum, New York, pp 3–52Google Scholar
  46. Lang S, Wagner F (1993) Biological activities of biosurfactants. In: Kosaric N (ed) Biosurfactants: production, properties, applications. Dekker, New York, pp 251–268Google Scholar
  47. Lang S, Wullbrandt D (1999) Rhamnose lipids—biosynthesis, microbial production and application potential. Appl Microbiol Biotechnol 51:22–32CrossRefPubMedGoogle Scholar
  48. Latifi A, Foglino M, Tanaka K, Williams P, Lazdunski A (1996) A hierarchical quorum-sensing cascade in Pseudomonas aeruginosa links the transcriptional activators LasR and RhlR (VsmR) to expression of the stationary-phase sigma factor RpoS. Mol Microbiol 21:1137–1146CrossRefPubMedGoogle Scholar
  49. Lazdunski AM, Ventre I, Sturgis JN (2004) Regulatory circuits and communication in Gram-negative bacteria. Nat Rev Microbiol 2:581–592CrossRefPubMedGoogle Scholar
  50. Lépine F, Déziel E, Milot S, Villemur R (2002) Liquid chromatographic/mass spectrometric detection of the 3-(3-hydroxyalkanoyloxy)alkanoic acid precursors of rhamnolipids in Pseudomonas aeruginosa cultures. J Mass Spectrom 37:41–46CrossRefPubMedGoogle Scholar
  51. Lequette Y, Greenberg EP (2005) Timing and localization of rhamnolipid synthesis gene expression in Pseudomonas aeruginosa biofilms. J Bacteriol 187:37–44CrossRefPubMedGoogle Scholar
  52. Linhardt RJ, Bakhit R, Daniels L, Mayerl F (1989) Microbially produced rhamnolipid as a source of rhamnose. Biotechnol Bioeng 33:365–368CrossRefGoogle Scholar
  53. Lyczak JB, Cannon CL, Pier GB (2000) Establishment of Pseudomonas aeruginosa infection: lessons from a versatile opportunist. Microbes Infect 2:1051–1060CrossRefPubMedGoogle Scholar
  54. Madison LL, Huisman GW (1999) Metabolic engineering of poly(3-hydroxyalkanoates): from DNA to plastic. Microbiol Mol Biol Rev 63:21–53PubMedGoogle Scholar
  55. Maier RM, Soberón-Chávez G (2000) Pseudomonas aeruginosa rhamnolipids: biosynthesis and potential applications. Appl Microbiol Biotechnol 54:625–633CrossRefPubMedGoogle Scholar
  56. Manresa A et al (1991) Kinetic studies on surfactant production by Pseudomonas aeruginosa 44T1. J Ind Microbiol 8:133–136CrossRefGoogle Scholar
  57. McClure CD, Schiller NL (1992) Effects of Pseudomonas aeruginosa rhamnolipids on monocyte-derived macrophages. J Leukoc Biol 51:97–102PubMedGoogle Scholar
  58. McClure CD, Schiller NL (1996) Inhibition of macrophage phagocytosis by Pseudomonas aeruginosa rhamnolipids in vitro and in vivo. Curr Microbiol 33:109–117CrossRefPubMedGoogle Scholar
  59. Medina G, Juarez K, Diaz R, Soberón-Chávez G (2003a) Transcriptional regulation of Pseudomonas aeruginosa rhlR, encoding a quorum-sensing regulatory protein. Microbiology 149:3073–3081CrossRefPubMedGoogle Scholar
  60. Medina G, Juarez K, Soberón-Chávez G (2003b) The Pseudomonas aeruginosa rhlAB operon is not expressed during the logarithmic phase of growth even in the presence of its activator RhlR and the autoinducer N-butyryl-homoserine lactone. J Bacteriol 185:377–380CrossRefPubMedGoogle Scholar
  61. Medina G, Juarez K, Valderrama B, Soberón-Chávez G (2003c) Mechanism of Pseudomonas aeruginosa RhlR transcriptional regulation of the rhlAB promoter. J Bacteriol 185:5976–5983CrossRefPubMedGoogle Scholar
  62. Mulligan CN, Gibbs BF (1989) Correlation of nitrogen metabolism with biosurfactant production by Pseudomonas aeruginosa. Appl Environ Microbiol 55:3016–3019PubMedGoogle Scholar
  63. Mulligan CN, Mahmourides G, Gibbs BF (1989) The influence of phosphate metabolism on biosurfactant production by Pseudomonas aeruginosa. J Bacteriol 12:199–210Google Scholar
  64. Ochsner UA, Reiser J (1995) Autoinducer-mediated regulation of rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 92:6424–6428PubMedCrossRefGoogle Scholar
  65. Ochsner UA, Fiechter A, Reiser J (1994) Isolation, characterization, and expression in Escherichia coli of the Pseudomonas aeruginosa rhlAB genes encoding a rhamnosyltransferase involved in rhamnolipid biosurfactant synthesis. J Biol Chem 269:19787–19795PubMedGoogle Scholar
  66. Ochsner UA, Hembach T, Fiechter A (1995a) Production of rhamnolipid biosurfactants. Adv Biochem Eng Biotechnol 53:89–118Google Scholar
  67. Ochsner UA, Reiser J, Fiechter A, Witholt B (1995b) Production of Pseudomonas aeruginosa rhamnolipid biosurfactants in heterologous hosts. Appl Environ Microbiol 61:3503–3506Google Scholar
  68. Olvera C, Goldberg JB, Sánchez R, Soberón-Chávez G (1999) The Pseudomonas aeruginosa algC gene product participates in rhamnolipid biosynthesis. FEMS Microbiol Lett 179:85–90CrossRefPubMedGoogle Scholar
  69. Pesci EC, Pearson JP, Seed PC, Iglewski BH (1997) Regulation of las and rhl quorum sensing in Pseudomonas aeruginosa. J Bacteriol 179:3127–3132PubMedGoogle Scholar
  70. Pham TH, Webb JS, Rehm BH (2004) The role of polyhydroxyalkanoate biosynthesis by Pseudomonas aeruginosa in rhamnolipid and alginate production as well as stress tolerance and biofilm formation. Microbiology 150:3405–3413CrossRefPubMedGoogle Scholar
  71. Rahim R, Burrows LL, Monteiro MA, Perry MB, Lam JS (2000) Involvement of the rml locus in core oligosaccharide and O polysaccharide assembly in Pseudomonas aeruginosa. Microbiology 146(Pt 11):2803–2814PubMedGoogle Scholar
  72. Rahim R et al (2001) Cloning and functional characterization of the Pseudomonas aeruginosa rhlC gene that encodes rhamnosyltransferase 2, an enzyme responsible for di-rhamnolipid biosynthesis. Mol Microbiol 40:708–718CrossRefPubMedGoogle Scholar
  73. Read RC et al (1992) Effect of Pseudomonas aeruginosa rhamnolipids on mucociliary transport and ciliary beating. J Appl Physiol 72:2271–2277PubMedGoogle Scholar
  74. Rehm BH, Mitsky TA, Steinbuchel A (2001) Role of fatty acid de novo biosynthesis in polyhydroxyalkanoic acid (PHA) and rhamnolipid synthesis by pseudomonads: establishment of the transacylase (PhaG)-mediated pathway for PHA biosynthesis in Escherichia coli. Appl Environ Microbiol 67:3102–3109CrossRefPubMedGoogle Scholar
  75. Robert M et al (1989) Effect of the carbon source on biosurfactant production by Pseudomonas aeruginosa 44T1. Biotechnol Lett 11:871–874CrossRefGoogle Scholar
  76. Sabra W, Kim EJ, Zeng AP (2002) Physiological responses of Pseudomonas aeruginosa PAO1 to oxidative stress in controlled microaerobic and aerobic cultures. Microbiology 148:3195–3202PubMedGoogle Scholar
  77. Schirmer A, Jendrossek D, Schlegel HG (1993) Degradation of poly(3-hydroxyoctanoic acid) [P(3HO)] by bacteria: purification and properties of a P(3HO) depolymerase from Pseudomonas fluorescens GK13. Appl Environ Microbiol 59:1220–1227PubMedGoogle Scholar
  78. Schooling SR, Charaf UK, Allison DG, Gilbert P (2004) A role for rhamnolipid in biofilm dispersion. Biofilms 1:91–99CrossRefGoogle Scholar
  79. Schuster M, Lostroh CP, Ogi T, Greenberg EP (2003) Identification, timing, and signal specificity of Pseudomonas aeruginosa quorum-controlled genes: a transcriptome analysis. J Bacteriol 185:2066–2079CrossRefPubMedGoogle Scholar
  80. Shryock TR, Silver SA, Banschbach MW, Kramer JC (1984) Effect of Pseudomonas aeruginosa rhamnolipid on human neutrophil migration. Curr Microbiol 10:323–328CrossRefGoogle Scholar
  81. Sierra G (1960) Hemolytic effect of a glycolipid produced by Pseudomonas aeruginosa. Antonie Van Leeuwenhoek 26:189–192PubMedCrossRefGoogle Scholar
  82. Sim L, Ward OP, Li Z-Y (1997) Production and characterization of a biosurfactant isolated from Pseudomonas aeruginosa UW-1. J Ind Microbiol Biotechnol 19:232–238CrossRefPubMedGoogle Scholar
  83. Smith RS, Iglewski B (2003) P. aeruginosa quorum-sensing systems and virulence. Curr Opin Microbiol 6:56–60CrossRefPubMedGoogle Scholar
  84. Soberón-Chávez G (2004) Biosynthesis of rhamnolipids. In: Ramos J-L (ed) Pseudomonas. Biosynthesis of macromolecules and molecular metabolism. Kluwer/Plenum, New York, pp 173–189Google Scholar
  85. Soberón-Chávez G, Aguirre-Ramírez M, Ordóñez L (2005a) Is Pseudomonas aeruginosa only sensing quorum? Crit Rev Microbiol 131:171–182CrossRefGoogle Scholar
  86. Soberón-Chávez G, Aguirre-Ramirez M, Sanchez R (2005b) The Pseudomonas aeruginosa RhlA enzyme is involved in rhamnolipid and polyhydroxyalkanoate production. J Ind Microbiol Biotechnol, in press, published on line in June 4thGoogle Scholar
  87. Somerville M et al (1992) Release of mucus glycoconjugates by Pseudomonas aeruginosa rhamnolipid into feline trachea in vivo and human bronchus in vitro. Am J Respir Cell Mol Biol 6:116–122PubMedGoogle Scholar
  88. Stanghellini ME, Miller RM (1997) Biosurfactants: their identity and potential efficacy in the biological control of zoosporic plant pathogens. Plant Dis 81:4–12CrossRefGoogle Scholar
  89. Syldatk C, Lang S, Matulovic U, Wagner F (1985a) Production of four interfacial active rhamnolipids from n-alkanes or glycerol by resting cells of Pseudomonas species DSM 2874. Z Naturforsch [C] 40:61–67Google Scholar
  90. Syldatk C, Lang S, Wagner F, Wray V, Witte L (1985b) Chemical and physical characterization of four interfacial-active rhamnolipids from Pseudomonas spec. DSM 2874 grown on n-alkanes. Z Naturforsch [C] 40:51–60Google Scholar
  91. Totten PA, Lara JC, Lory S (1990) The rpoN gene product of Pseudomonas aeruginosa is required for expression of diverse genes, including the flagellin gene. J Bacteriol 172:389–396PubMedGoogle Scholar
  92. Tuleva BK, Ivanov GR, Christova NE (2002) Biosurfactant production by a new Pseudomonas putida strain. Z Naturforsch [C] 57:356–360Google Scholar
  93. Van Delden C, Iglewski BH (1998) Cell-to-cell signaling and Pseudomonas aeruginosa infections. Emerg Infect Dis 4:551–560PubMedCrossRefGoogle Scholar
  94. Venkata Ramana K, Karanth NG (1989) Factors affecting biosurfactant production using Pseudomonas aeruginosa CFTR-6 under submerged conditions. J Chem Technol Biotechnol 45:249–257CrossRefGoogle Scholar
  95. Wade DS, Calfee W, Rocha ER, Ling EA, Engstrom E, Coleman JP, Pesci EC (2005) J Bacteriol 187:4372–4380CrossRefPubMedGoogle Scholar
  96. Wagner VE, Bushnell D, Passador L, Brooks AI, Iglewski BH (2003) Microarray analysis of Pseudomonas aeruginosa quorum-sensing regulons: effects of growth phase and environment. J Bacteriol 185:2080–2095CrossRefPubMedGoogle Scholar
  97. Wang X, Gong L, Liang S, Han X, Zhu C, Li Y (2005) Algicidal activity of rhamnolipid biosurfactants produced by Pseudomonas aeruginosa. Harmful Algae 4:433–443CrossRefGoogle Scholar
  98. Whiteley M, Lee KM, Greenberg EP (1999) Identification of genes controlled by quorum sensing in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 96:13904–18909CrossRefPubMedGoogle Scholar
  99. Zhang Y, Miller RM (1994) Effect of a Pseudomonas rhamnolipid biosurfactant on cell hydrophobicity and biodegradation of octadecane. Appl Environ Microbiol 60:2101–2106PubMedGoogle Scholar
  100. Zhang Y, Miller RM (1995) Effect of rhamnolipid (biosurfactant) structure on solubilization and biodegradation on n-alkanes. Appl Environ Microbiol 61:2247–2251Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Gloria Soberón-Chávez
    • 1
    • 3
  • François Lépine
    • 2
  • Eric Déziel
    • 2
  1. 1.Departamento de Bioprocesos y Biocatálisis, Instituto de BiotecnologíaUniversidad Nacional Autónoma de MéxicoMexico CityMexico
  2. 2.INRS-Institut Armand-FrappierUniversité du QuébecLavalCanada
  3. 3.ApdoMexico CityMexico

Personalised recommendations