Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Expression of alanine:glyoxylate aminotransferase gene from Saccharomyces cerevisiae in Ashbya gossypii

  • 173 Accesses

  • 17 Citations

Abstract

Two plasmids containing an autonomously replicating sequence from Saccharomyces cerevisiae were constructed. Using these vectors, the AGX1 gene encoding alanine:glyoxylate aminotransferase (AGT) from S. cerevisiae, which converts glyoxylate into glycine but is not present in Ashbya gossypii, was expressed in A. gossypii. Geneticin-resistant transformants with the plasmid having the kanamycin resistance gene under the control of the translation elongation factor 1 α (TEF) promoter and terminator from A. gossypii were obtained with a transformation efficiency of approximately 10–20 transformants per microgram of plasmid DNA. The specific AGT activities of A. gossypii pYPKTPAT carrying the AGX1 gene in glucose- and rapeseed-oil-containing media were 40 and 160 mU mg−1 of wet mycelial weight, respectively. The riboflavin concentrations of A. gossypii pYPKTPAT carrying AGX1 gene in glucose- and rapeseed-oil-containing media were 20 and 150 mg l−1, respectively. In the presence of 50 mM glyoxylate, the riboflavin concentration and the specific riboflavin concentration of A. gossypii pYPKTPAT were 2- and 1.3-fold those of A. gossypii pYPKT without the AGX1 gene.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Cooperman M, Lopez R (1984) Riboflavin. In: Machlin LJ (ed) Handbook of vitamins. Marcel Dekker, New York, p 300

  2. Demain AL (1972) Riboflavin oversynthesis. Annu Rev Microbiol 26:369–388

  3. Dietrich FS, Voegeli S, Brachat S, Lerch A, Gates K, Steiner S, Mohr C, Pohlmann R, Luedi P, Choi S, Wing RA, Flavier A, Gaffney TD, Phillippsen P (2004) The Ashbya gossypii genome as a tool for mapping the ancient Saccharomyces cerevisiae genome. Science 304:304–307

  4. Eggersdorfer M, Adam G, John M, Hahnlein W, Labler L, Baldenius RU, Bussche-Hunnefeld L, Hilgemann E, Hoppe P, Sturmer R, Weber F, Ruttimann A, Moine G, Hohmann HP, Kurth R, Paust J, Pauling H, Kaesler B, Oster B, Fechtel U, Kaiser K, Potzolli B, Cassut M, Koppe T, Schwarz M, Weimann BJ, Henngartner U, Saizieu AE, Wehrli C, Blum R (1996) Vitamins, chapter 1. In: Ullmann's encyclopedia of industrial chemistry, vol A27. VCH, Weinheim, p 521

  5. Fingcham JRS (1989) Transformation in fungi. Microbiol Rev 53:148–170

  6. Foster C, Santos MA, Ruffert S, Kramer R, Revuelta JL (1999) Physiological consequence of disruption of the VMA1 gene in the riboflavin overproducer Ashbya gossypii. J Biol Chem 274:9442–9448

  7. Kaplan L, Demain AL (1970) Nutritional studies on riboflavin overproduction by Ashbya gossypii. In: Ahearn DG (ed) Recent trends in yeast research. Georgia State University, Atlanta, pp 137–159

  8. Karos M, Vilarino C, Bollschweiler C, Revuelta JL (2004) A genome-wide transcription analysis of a fungal riboflavin overproducer. J Biotechnol 113:69–76

  9. Lim SH, Ming H, Park EY, Choi JS (2003) Improvement of riboflavin production using mineral support in the culture of Ashbya gossypii. Food Technol Biotechnol 41:137–144

  10. Monschau N, Sahm H, Stahmann KP (1998) Threonine aldolase overexpression plus threonine supplementation enhanced riboflavin production in Ashbya gossypii. Appl Environ Microbiol 64:4283–4290

  11. Rose MD, Winston F, Hieter P (1990) Methods in yeast genetics: a laboratory course manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp 126–134

  12. Schlosser T, Gatgens C, Weber U, Stahmann KP (2004) Alanine:glyoxylate anminotransferase of Saccharomyces cerevisiae-encoding gene AGX1 and metabolic significance. Yeast 21:63–73

  13. Schlupen C, Santos MA, Weber U, Graaf A, Revuelta JL, Stahmann KP (2003) Disruption of the SHM2 gene, encoding one of two serine hydroxymethyltransferase isozymes, reduced the flux from glycine to serine in Ashbya gossypii. Biochem J 369:263–273

  14. Stahmann KP, Revuelta JL, Seulberger H (2000) Three biotechnical process using Ashbya gossypii, Candida famata, or Bacillus subtilis compete with chemical riboflavin production. Appl Microbiol Biotechnol 53:509–516

  15. Steiner S, Philippsen P (1994) Sequence and promoter analysis of the highly expressed TEF gene of the filamentous fungus Ashbya gossypii. Mol Gen Genet 242:263–271

  16. Steiner S, Wendland J, Wright MC, Philippsen P (1995) Homologous recombination as the main mechanism for DNA integration and cause of rearrangement in the filamentous ascomycete Ashbya gossypii. Genetics 140:973–987

  17. Takada Y, Noguchi T (1985) Characterization of alanine:glyoxylate aminotransferase from Saccharomyces cerevisiae, a regulatory enzyme in the glyoxylate pathway of glycine and serine biosynthesis from tricarboxylic acid-cycle intermediates. Biochem J 231:157–163

  18. Wright MC, Philippsen P (1991) Replicative transformation of the filamentous fungus Ashbya gossypii with plasmids containing Saccharomyces cerevisiae ARS elements. Gene 109:99–105

Download references

Author information

Correspondence to Enoch Y. Park.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kato, T., Park, E.Y. Expression of alanine:glyoxylate aminotransferase gene from Saccharomyces cerevisiae in Ashbya gossypii . Appl Microbiol Biotechnol 71, 46–52 (2006). https://doi.org/10.1007/s00253-005-0124-5

Download citation

Keywords

  • Riboflavin
  • Sole Carbon Source
  • Glyoxylate
  • Translation Elongation Factor
  • Flavin Adenine Dinucleotide