Applied Microbiology and Biotechnology

, Volume 68, Issue 6, pp 705–717 | Cite as

10 years of the nisin-controlled gene expression system (NICE) in Lactococcus lactis

Mini-Review

Abstract

Lactococcus lactis is a Gram-positive lactic acid bacterium that, in addition to its traditional use in food fermentations, is increasingly used in modern biotechnological applications. In the last 25 years great progress has been made in the development of genetic engineering tools and the molecular characterization of this species. A new versatile and tightly controlled gene expression system, based on the auto-regulation mechanism of the bacteriocin nisin, was developed 10 years ago—the NIsin Controlled gene Expression system, called NICE. This system has become one of the most successful and widely used tools for regulated gene expression in Gram-positive bacteria. The review describes, after a brief introduction of the host bacterium L. lactis, the fundaments, components and function of the NICE system. Furthermore, an extensive overview is provided of the different applications in lactococci and other Gram-positive bacteria: (1) over-expression of homologous and heterologous genes for functional studies and to obtain large quantities of specific gene products, (2) metabolic engineering, (3) expression of prokaryotic and eukaryotic membrane proteins, (4) protein secretion and anchoring in the cell envelope, (5) expression of genes with toxic products and analysis of essential genes and (6) large-scale applications. Finally, an overview is given of growth and induction conditions for lab-scale and industrial-scale applications.

References

  1. Antiporta MH, Dunny GM (2002) ccfA, the genetic determinant for the cCF10 peptide pheromone in Enterococcus faecalis OG1RF. J Bacteriol 184:1155–1162CrossRefPubMedGoogle Scholar
  2. Arnau J, Hjerl-Hansen E, Israelsen H (1997) Heterologous gene expression of bovine plasmin in Lactococcus lactis. Appl Microbiol Biotechnol 48:331–338CrossRefPubMedGoogle Scholar
  3. Åvall-Jääskeläinen S, Kylä-Nikkilä K, Kahala M, Miikkulainen-Lahti T, Palva A (2002) Surface display of foreign epitopes on the Lactobacillus brevis S-layer. Appl Environ Microbiol 68:5943–5951CrossRefPubMedGoogle Scholar
  4. Axelsson L, Lindstad G, Naterstad K (2003) Development of an inducible gene expression system for Lactobacillus sakei. Lett Appl Microbiol 37:115–120CrossRefPubMedGoogle Scholar
  5. Bermúdez-Humarán LG, Langella P, Miyoshi A, Gruss A, Guerra RT, Montes de Oca-Luna R, Le Loir Y (2002) Production of human papillomavirus type 16 E7 protein in Lactococcus lactis. Appl Environ Microbiol 68:917–922CrossRefPubMedGoogle Scholar
  6. Bermúdez-Humarán LG, Langella P, Cortes-Perez NG, Gruss A, Tamez-Guerra RS, Oliveira SC, Saucedo-Cardenas O, Montes de Oca-Luna R, Le Loir Y (2003) Intranasal immunization with recombinant Lactococcus lactis secreting murine interleukin-12 enhances antigen-specific Th1 cytokine production. Infect Immun 71:1887–1896CrossRefPubMedGoogle Scholar
  7. Boels IC, Ramos A, Kleerebezem M, Devos WM (2001) Functional analysis of the Lactococcus lactis galU and galE genes and their impact on sugar nucleotide and exopolysaccharide biosynthesis. Appl Environ Microbiol 67:3033–3040CrossRefPubMedGoogle Scholar
  8. Boels IC, Kleerebezem M, de Vos WM (2003) Engineering of carbon distribution between glycolysis and sugar nucleotide biosynthesis in Lactococcus lactis. Appl Environ Microbiol 69:1129–1135CrossRefPubMedGoogle Scholar
  9. Boels IC, Beerthuyzen MM, Kosters MH, Van Kaauwen MP, Kleerebezem M, De Vos WM (2004) Identification and functional characterization of the Lactococcus lactis rfb operon, required for dTDP–rhamnose biosynthesis. J Bacteriol 186:1239–1248CrossRefPubMedGoogle Scholar
  10. Bolotin A, Wincker P, Mauger S, Jaillon O, Malarme K, Weissenbach J, Ehrlich SD, Sorokin A (2001) The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp. lactis IL1403. Genome Res 11:731–753CrossRefPubMedGoogle Scholar
  11. Bron PA, Benchimol MG, Lambert J, Palumbo E, Deghorain M, Delcour J, Devos WM, Kleerebezem M, Hols P (2002) Use of the alr gene as a food-grade selection marker in lactic acid bacteria. Appl Environ Microbiol 68:5663–5670PubMedGoogle Scholar
  12. Bryan EM, Bae T, Kleerebezem H, Dunny GM (2000) Improved vectors for nisin-controlled expression in gram-positive bacteria. Plasmid 44:183–190CrossRefPubMedGoogle Scholar
  13. Burgess C, O'Connell-Motherway M, Sybesma W, Hugenholtz J, van Sinderen D (2004) Riboflavin production in Lactococcus lactis: potential for in situ production of vitamin-enriched foods. Appl Environ Microbiol 70:5769–5777CrossRefPubMedGoogle Scholar
  14. Campo N, Daveran-Mingot ML, Leenhouts K, Ritzenthaler P, Le Bourgeois P (2002) Cre-loxP recombination system for large genome rearrangements in Lactococcus lactis. Appl Environ Microbiol 68:2359–2367PubMedCrossRefGoogle Scholar
  15. Chatel JM, Nouaille S, Adelpatient K, Le Loir Y, Boe H, Gruss A, Wal JM, Langella P (2003) Characterization of a Lactococcus lactis strain that secretes a major epitope of bovine beta-lactoglobulin and evaluation of its immunogenicity in mice. Appl Environ Microbiol 69:6620–6627CrossRefPubMedGoogle Scholar
  16. Chong BF, Nielsen LK (2003) Amplifying the cellular reduction potential of Streptococcus zooepidemicus. J Biotechnol 100:33–41CrossRefPubMedGoogle Scholar
  17. Christensson C, Bratt H, Collins LJ, Coolbear T, Holland R, Lubbers MW, Otoole PW, Reid JR (2002) Cloning and expression of an oligopeptidase, PepO, with novel specificity from Lactobacillus rhamnosus HN001 (DR20). Appl Environ Microbiol 68:254–262CrossRefPubMedGoogle Scholar
  18. Cibik R, Tailliez P, Langella P, Chapot-Chartier MP (2001) Identification of Mur, an atypical peptidoglycan hydrolase derived from Leuconostoc citreum. Appl Environ Microbiol 67:858–864CrossRefPubMedGoogle Scholar
  19. de Ruyter PG, Kuipers OP, Beerthuyzen MM, Alen-Boerrigter I, de Vos WM (1996a) Functional analysis of promoters in the nisin gene cluster of Lactococcus lactis. J Bacteriol 178:3434–3439PubMedGoogle Scholar
  20. de Ruyter PG, Kuipers OP, de Vos WM (1996b) Controlled gene expression systems for Lactococcus lactis with the food-grade inducer nisin. Appl Environ Microbiol 62:3662–3667PubMedGoogle Scholar
  21. de Ruyter PG, Kuipers OP, Meijer WC, de Vos WM (1997) Food-grade controlled lysis of Lactococcus lactis for accelerated cheese ripening. Nat Biotechnol 15:976–979CrossRefPubMedGoogle Scholar
  22. de Vos WD (1987) Gene cloning and expression in lactic streptococci. FEMS Microbiol Lett 46:281–295CrossRefGoogle Scholar
  23. de Vos WM (1999) Safe and sustainable systems for food-grade fermentations by genetically modified lactic acid bacteria. Int Dairy J 9:3–10CrossRefGoogle Scholar
  24. de Vos WM, Hugenholtz J (2004) Engineering metabolic highways in lactococci and other lactic acid bacteria. Trends Biotechnol 22:72–79CrossRefPubMedGoogle Scholar
  25. Dieye Y, Usai S, Clier F, Gruss A, Piard JC (2001) Design of a protein-targeting system for lactic acid bacteria. J Bacteriol 183:4157–4166CrossRefPubMedGoogle Scholar
  26. Dodd HM, Gasson MJ (1994) Bacteriocins of lactic acid bacteria. In: Gasson MJ, de Vos WM (eds) Genetics and biotechnology of lactic acid bacteria. Blackie, LondonGoogle Scholar
  27. Duwat P, Sourice S, Cesselin B, Lamberet G, Vido K, Gaudu P, Le Loir Y, Violet F, Loubière P, Gruss A (2001) Respiration capacity of the fermenting bacterium Lactococcus lactis and its positive effects on growth and survival. J Bacteriol 183:4509–4516CrossRefPubMedGoogle Scholar
  28. Eichenbaum Z, Federle MJ, Marra D, de Vos WM, Kuipers OP, Kleerebezem M, Scott JR (1998) Use of the lactococcal nisA promoter to regulate gene expression in gram-positive bacteria: comparison of induction level and promoter strength. Appl Environ Microbiol 64:2763–2769PubMedGoogle Scholar
  29. Enouf V, Langella P, Commissaire J, Cohen J, Corthier G (2001) Bovine rotavirus nonstructural protein 4 produced by Lactococcus lactis is antigenic and immunogenic. Appl Environ Microbiol 67:1423–1428CrossRefPubMedGoogle Scholar
  30. Fernández L, Beerthuyzen MM, Brown J, Siezen RJ, Coolbear T, Holland R, Kuipers OP (2000) Cloning, characterization, controlled overexpression, and inactivation of the major tributyrin esterase gene of Lactococcus lactis. Appl Environ Microbiol 66:1360–1368CrossRefPubMedGoogle Scholar
  31. Francia MV, Clewell DB (2002) Transfer origins in the conjugative Enterococcus faecalis plasmids pAD1 and pAM373: identification of the pAD1 nic site, a specific relaxase and a possible TraG-like protein. Mol Microbiol 45:375–395CrossRefPubMedGoogle Scholar
  32. Franke CM, Tiemersma J, Venema G, Kok J (1999) Membrane topology of the lactococcal bacteriocin ATP-binding cassette transporter protein LcnC. Involvement of LcnC in lactococcin A maturation. J Biol Chem 274:8484–8490CrossRefPubMedGoogle Scholar
  33. Fuglsang A (2003) Lactic acid bacteria as prime candidates for codon optimization. Biochem Biophys Res Commun 312:285–291CrossRefPubMedGoogle Scholar
  34. Gasson MJ (1983) Plasmid complements of Streptococcus lactis NCDO 712 and other lactic streptococci after protoplast-induced curing. J Bacteriol 154:1–9PubMedGoogle Scholar
  35. Gasson MJ, de Vos WM (1994) Genetics and biotechnology of lactic acid bacteria. Blackie, LondonGoogle Scholar
  36. Guillot A, Gitton C, Anglade P, Mistou MY (2003) Proteomic analysis of Lactococcus lactis, a lactic acid bacterium. Proteomics 3:337–354CrossRefPubMedGoogle Scholar
  37. Gupta SK, Bhattacharyya TK, Ghosh TC (2004) Synonymous codon usage in Lactococcus lactis: mutational bias versus translational selection. J Biomol Struct Dyn 21:527–536PubMedGoogle Scholar
  38. Hagting A, Knol J, Hasemeier B, Streutker MR, Fang G, Poolman B, Konings WN (1997) Amplified expression, purification and functional reconstitution of the dipeptide and tripeptide transport protein of Lactococcus lactis. Eur J Biochem 247:581–587CrossRefPubMedGoogle Scholar
  39. Hanniffy S, Wiedermann U, Repa A, Mercenier A, Daniel C, Fioramonti J, Tlaskolova H, Kozakova H, Israelsen H, Madsen S, Vrang A, Hols P, Delcour J, Bron P, Kleerebezem M, Wells J (2004) Potential and opportunities for use of recombinant lactic acid bacteria in human health. Adv Appl Microbiol 56:1–64CrossRefPubMedGoogle Scholar
  40. Hasper HE, de Kruijff B, Breukink E (2004) Assembly and stability of nisin-lipid II pores. Biochemistry 43:11567–11575CrossRefPubMedGoogle Scholar
  41. Henrich B, Klein JR, Weber B, Delorme C, Renault P, Wegmann U (2002) Food-grade delivery system for controlled gene expression in Lactococcus lactis. Appl Environ Microbiol 68:5429–5436PubMedCrossRefGoogle Scholar
  42. Heuberger EHML, Smits E, Poolman B (2001) Xyloside transport by XylP, a member of the galactoside–pentoside–hexuronide family. J Biol Chem 276:34465–34472CrossRefPubMedGoogle Scholar
  43. Hickey RM, Twomey DP, Ross RP, Hill C (2003) Potential of the enterocin regulatory system to control expression of heterologous genes in Enterococcus. J Appl Microbiol 95:390–397CrossRefPubMedGoogle Scholar
  44. Hickey RM, Ross RP, Hill C (2004) Controlled autolysis and enzyme release in a recombinant lactococcal strain expressing the metalloendopeptidase enterolysin A. Appl Environ Microbiol 70:1744–1748CrossRefPubMedGoogle Scholar
  45. Hoefnagel MH, Starrenburg MJ, Martens DE, Hugenholtz J, Kleerebezem M, Van S II, Bongers R, Westerhoff HV, Snoep JL (2002) Metabolic engineering of lactic acid bacteria, the combined approach: kinetic modelling, metabolic control and experimental analysis. Microbiology 148:1003–1013PubMedGoogle Scholar
  46. Hols P, Kleerebezem M, Schanck AN, Ferain T, Hugenholtz J, Delcour J, de Vos WM (1999) Conversion of Lactococcus lactis from homolactic to homoalanine fermentation through metabolic engineering. Nat Biotechnol 17:588–592CrossRefPubMedGoogle Scholar
  47. Hugenholtz J, Kleerebezem M, Starrenburg M, Delcour J, de Vos W, Hols P (2000) Lactococcus lactis as a cell factory for high-level diacetyl production. Appl Environ Microbiol 66:4112–4114CrossRefPubMedGoogle Scholar
  48. Hugenholtz J, Sybesma W, Groot MN, Wisselink W, Ladero V, Burgess K, van Sinderen D, Piard JC, Eggink G, Smid EJ, Savoy G, Sesma F, Jansen T, Hols P, Kleerebezem M (2002) Metabolic engineering of lactic acid bacteria for the production of nutraceuticals. Antonie Van Leeuwenhoek 82:217–235CrossRefPubMedGoogle Scholar
  49. Hughes MJ, Moore JC, Lane JD, Wilson R, Pribul PK, Younes ZN, Dobson RJ, Everest P, Reason AJ, Redfern JM, Greer FM, Paxton T, Panico M, Morris HR, Feldman RG, Santangelo JD (2002) Identification of major outer surface proteins of Streptococcus agalactiae. Infect Immun 70:1254–1259CrossRefPubMedGoogle Scholar
  50. Jensen PR, Hammer K (1993) Minimal requirements for exponential growth of Lactococcus lactis. Appl Environ Microbiol 59:4363–4366PubMedGoogle Scholar
  51. Klaenhammer T, Altermann E, Arigoni F, Bolotin A, Breidt F, Broadbent J, Cano R, Chaillou S, Deutscher J, Gasson M, van de Guchte M, Guzzo J, Hartke A, Hawkins T, Hols P, Hutkins R, Kleerebezem M, Kok J, Kuipers O, Lubbers M, Maguin E, McKay L, Mills D, Nauta A, Overbeek R, Pel H, Pridmore D, Saier M, van Sinderen D, Sorokin A, Steele J, O'Sullivan D, de Vos W, Weimer B, Zagorec M, Siezen R (2002) Discovering lactic acid bacteria by genomics. Antonie Van Leeuwenhoek 82:29–58CrossRefPubMedGoogle Scholar
  52. Kleerebezem M, Hugenholtz J (2003) Metabolic pathway engineering in lactic acid bacteria. Curr Opin Biotechnol 14:232–237CrossRefPubMedGoogle Scholar
  53. Kleerebezem M, Quadri LE (2001) Peptide pheromone-dependent regulation of antimicrobial peptide production in Gram-positive bacteria: a case of multicellular behavior. Peptides 22:1579–1596CrossRefPubMedGoogle Scholar
  54. Kleerebezem M, Beerthuyzen MM, Vaughan EE, de Vos WM, Kuipers OP (1997a) Controlled gene expression systems for lactic acid bacteria: transferable nisin-inducible expression cassettes for Lactococcus, Leuconostoc, and Lactobacillus spp. Appl Environ Microbiol 63:4581–4584PubMedGoogle Scholar
  55. Kleerebezem M, Quadri LE, Kuipers OP, de Vos WM (1997b) Quorum sensing by peptide pheromones and two-component signal-transduction systems in Gram-positive bacteria. Mol Microbiol 24:895–904CrossRefPubMedGoogle Scholar
  56. Kleerebezem M, de Vos WM, Kuipers OP (1999) The lantibiotics nisin and subtilin act as extracellular regulators of their own biosynthesis. In: Dunny GM, Winams SC (eds) Cell–cell signalling in bacteria. American Society for Microbiology, Washington, D.C.Google Scholar
  57. Kleerebezem M, Boels IC, Groot MN, Mierau I, Sybesma W, Hugenholtz J (2002) Metabolic engineering of Lactococcus lactis: the impact of genomics and metabolic modelling. J Biotechnol 98:199–213CrossRefPubMedGoogle Scholar
  58. Kleerebezem M, Bongers R, Rutten G, de Vos WM, Kuipers OP (2004) Autoregulation of subtilin biosynthesis in Bacillus subtilis: the role of the spa-box in subtilin-responsive promoters. Peptides 25:1415–1424CrossRefPubMedGoogle Scholar
  59. Koebmann BJ, Nilsson D, Kuipers OP, Jensen PR (2000) The membrane-bound H(+)-ATPase complex is essential for growth of Lactococcus lactis. J Bacteriol 182: 4738–4743CrossRefPubMedGoogle Scholar
  60. Kotelnikova EA, Gelfand MS (2002) Bacteriocin production by Gram-positive bacteria and the mechanisms of transcriptional regulation. Russ J Genet 38:628–641CrossRefGoogle Scholar
  61. Kuipers OP, Beerthuyzen MM, Siezen RJ, De Vos WM (1993) Characterization of the nisin gene cluster nisABTCIPR of Lactococcus lactis. Requirement of expression of the nisA and nisI genes for development of immunity. Eur J Biochem 216:281–291CrossRefPubMedGoogle Scholar
  62. Kuipers OP, Beerthuyzen MM, de Ruyter PG, Luesink EJ, de Vos WM (1995) Autoregulation of nisin biosynthesis in Lactococcus lactis by signal transduction. J Biol Chem 270:27299–27304CrossRefPubMedGoogle Scholar
  63. Kuipers OP, de Ruyter PGGA, Kleerebezem M, de Vos WM (1998) Quorum sensing-controlled gene expression in lactic acid bacteria. J Biotechnol 64:15–21CrossRefGoogle Scholar
  64. Kunji ER, Mierau I, Hagting A, Poolman B, Konings WN (1996) The proteolytic systems of lactic acid bacteria. Antonie Van Leeuwenhoek 70:187–221CrossRefPubMedGoogle Scholar
  65. Kunji ER, Slotboom DJ, Poolman B (2003) Lactococcus lactis as host for overproduction of functional membrane proteins. Biochim Biophys Acta 1610:97–108PubMedCrossRefGoogle Scholar
  66. Le Loir Y, Nouaille S, Commissaire J, Brétigny L, Gruss A, Langella P (2001a) Signal peptide and propeptide optimization for heterologous protein secretion in Lactococcus lactis. Appl Environ Microbiol 67:4119–4127CrossRefPubMedGoogle Scholar
  67. Le Loir Y, Nouaille S, Ribeiro L, Commissaire J, Corthier G, Gilbert S, Chatel J, L'Haridon R, Gruss A, Langella P (2001b) Secretion of heterologous proteins of therapeutical interest in Lactococcus lactis. Lait 81:217–226CrossRefGoogle Scholar
  68. Leroy F, Devuyst L (2004) Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends Food Sci Technol 15:67–78CrossRefGoogle Scholar
  69. Lindholm A, Smeds A, Palva A (2004) Receptor binding domain of Escherichia coli F18 fimbrial adhesin FedF can be both efficiently secreted and surface displayed in a functional form in Lactococcus lactis. Appl Environ Microbiol 70:2061–2071CrossRefPubMedGoogle Scholar
  70. Looijesteijn PJ, Boels IC, Kleerebezem M, Hugenholtz J (1999) Regulation of exopolysaccharide production by Lactococcus lactis subsp. cremoris by the sugar source. Appl Environ Microbiol 65:5003–5008PubMedGoogle Scholar
  71. Lopez de Felipe F, Hugenholtz J (1999) Pyruvate flux distribution in NADH-oxidase-overproducing Lactococcus lactis strain as a function of culture conditions. FEMS Microbiol Lett 179:461–466CrossRefPubMedGoogle Scholar
  72. Lopez de Felipe F, Kleerebezem M, de Vos WM, Hugenholtz J (1998) Cofactor engineering: a novel approach to metabolic engineering in Lactococcus lactis by controlled expression of NADH oxidase. J Bacteriol 180:3804–3808PubMedGoogle Scholar
  73. Luoma S, Peltoniemi K, Joutsjoki V, Rantanen T, Tamminen M, Heikkinen I, Palva A (2001) Expression of six peptidases from Lactobacillus helveticus in Lactococcus lactis. Appl Environ Microbiol 67:1232–1238CrossRefPubMedGoogle Scholar
  74. Madsen PL, Johansen AH, Hammer K, Brøndsted L (1999) The genetic switch regulating activity of early promoters of the temperate lactococcal bacteriophage TP901-1. J Bacteriol 181:7430–7438PubMedGoogle Scholar
  75. Margolles A, Putman M, van Veen HW, Konings WN (1999) The purified and functionally reconstituted multidrug transporter LmrA of Lactococcus lactis mediates the transbilayer movement of specific fluorescent phospholipids. Biochemistry 38:16298–16306CrossRefPubMedGoogle Scholar
  76. Mathiesen G, Sørvig E, Blatny J, Naterstad K, Axelsson L, Eijsink VGH (2004) High-level gene expression in Lactobacillus plantarum using a pheromone-regulated bacteriocin promoter. Lett Appl Microbiol 39:137–143CrossRefPubMedGoogle Scholar
  77. McCormick JK, Hirt H, Waters CM, Tripp TJ, Dunny GM, Schlievert PM (2001) Antibodies to a surface-exposed, N-terminal domain of aggregation substance are not protective in the rabbit model of Enterococcus faecalis infective endocarditis. Infect Immun 69:3305–3314CrossRefPubMedGoogle Scholar
  78. McGrath S, Fitzgerald GF, van Sinderen D (2002) Identification and characterization of phage-resistance genes in temperate lactococcal bacteriophages. Mol Microbiol 43:509–520CrossRefPubMedGoogle Scholar
  79. Mierau I, Leij P, van Swam I, Blommestein B, Floris E, Mond J, Smid EJ (2005a) Industrial-scale production and purification of a heterologous protein in Lactococcus lactis using the nisin-controlled gene expression system NICE: the case of lysostaphin. Microb Cell Fact 4:15CrossRefPubMedGoogle Scholar
  80. Mierau I, Olieman K, Mond J, Smid EJ (2005b) Optimization of the Lactococcus lactis nisin-controlled gene expression system NICE for industrial applications. Microb Cell Fact 4:16CrossRefPubMedGoogle Scholar
  81. Miyoshi A, Poquet I, Azevedo V, Commissaire J, Bermudez-Humaran L, Domakova E, Le Loir Y, Oliveira SC, Gruss A, Langella P (2002) Controlled production of stable heterologous proteins in Lactococcus lactis. Appl Environ Microbiol 68:3141–3146CrossRefPubMedGoogle Scholar
  82. Neu T, Henrich B (2003) New thermosensitive delivery vector and its use to enable nisin-controlled gene expression in Lactobacillus gasseri. Appl Environ Microbiol 69:1377–1382CrossRefPubMedGoogle Scholar
  83. Neves AR, Ramos A, Costa H, van Swan II, Hugenholtz J, Kleerebezem M, de Vos W, Santos H (2002) Effect of different NADH oxidase levels on glucose metabolism by Lactococcus lactis: kinetics of intracellular metabolite pools determined by in vivo nuclear magnetic resonance. Appl Environ Microbiol 68:6332–6342CrossRefPubMedGoogle Scholar
  84. Nielsen J (2001) Metabolic engineering. Appl Microbiol Biotechnol 55:263–283CrossRefPubMedGoogle Scholar
  85. Nouaille S, Ribeiro LA, Miyoshi A, Pontes D, Le Loir Y, Oliveira SC, Langella P, Azevedo V (2003) Heterologous protein production and delivery systems for Lactococcus lactis. Genet Mol Res 2:102–111PubMedGoogle Scholar
  86. Nouaille S, Commissaire J, Gratadoux JJ, Ravn P, Bolotin A, Gruss A, Leloir Y, Langella P (2004) Influence of lipoteichoic acid D-alanylation on protein secretion in Lactococcus lactis as revealed by random mutagenesis. Appl Environ Microbiol 70:1600–1607CrossRefPubMedGoogle Scholar
  87. Novotny R, Scheberl A, Giry-Laterriere M, Messner P, Schäffer C (2005) Gene cloning, functional expression and secretion of the S-layer protein SgsE from Geobacillus stearothermophilus NRS 2004/3a in Lactococcus lactis. FEMS Microbiol Lett 242:27–35CrossRefPubMedGoogle Scholar
  88. Pavan S, Hols P, Delcour J, Geoffroy MC, Grangette C, Kleerebezem M, Mercenier A (2000) Adaptation of the nisin-controlled expression system in Lactobacillus plantarum: a tool to study in vivo biological effects. Appl Environ Microbiol 66:4427–4432CrossRefPubMedGoogle Scholar
  89. Pedersen MB, Koebmann BJ, Jensen PR, Nilsson D (2002) Increasing acidification of nonreplicating Lactococcus lactis delta-thyA mutants by incorporating ATPase activity. Appl Environ Microbiol 68:5249–5257CrossRefPubMedGoogle Scholar
  90. Platteeuw C, van Alen-Boerrigter I, van Schalkwijk S, de Vos WM (1996) Food-grade cloning and expression system for Lactococcus lactis. Appl Environ Microbiol 62:1008–1013PubMedGoogle Scholar
  91. Poolman B, Konings WN (1988) Relation of growth of Streptococcus lactis and Streptococcus cremoris to amino acid transport. J Bacteriol 170:700–707PubMedGoogle Scholar
  92. Poquet I, Saint V, Seznec E, Simoes N, Bolotin A, Gruss A (2000) HtrA is the unique surface housekeeping protease in Lactococcus lactis and is required for natural protein processing. Mol Microbiol 35:1042–1051CrossRefPubMedGoogle Scholar
  93. Ramos A, Neves AR, Ventura R, Maycock C, López P, Santos H (2004) Effect of pyruvate kinase overproduction on glucose metabolism of Lactococcus lactis. Microbiology 150:1103–1111CrossRefPubMedGoogle Scholar
  94. Ravn P, Arnau J, Madsen SM, Vrang A, Israelsen H (2003) Optimization of signal peptide SP310 for heterologous protein production in Lactococcus lactis. Microbiology 149:2193–2201CrossRefPubMedGoogle Scholar
  95. Ribardo DA, McIver KS (2003) amrA encodes a putative membrane protein necessary for maximal exponential phase expression of the Mga virulence regulon in Streptococcus pyogenes. Mol Microbiol 50:673–685CrossRefPubMedGoogle Scholar
  96. Ribeiro LA, Azevedo V, Le Loir Y, Oliveira SC, Dieye Y, Piard JC, Gruss A, Langella P (2002) Production and targeting of the Brucella abortus antigen L7/L12 in Lactococcus lactis: a first step towards food-grade live vaccines against brucellosis. Appl Environ Microbiol 68:910–916CrossRefPubMedGoogle Scholar
  97. Riesenberg D, Guthke R (1999) High-cell-density cultivation of microorganisms. Appl Microbiol Biotechnol 51:422–430CrossRefPubMedGoogle Scholar
  98. Rigoulay C, Poquet I, Madsen SM, Gruss A (2004) Expression of the Staphylococcus aureus surface proteins Htra(1) and Htra(2) in Lactococcus lactis. FEMS Microbiol Lett 237:279–288CrossRefPubMedGoogle Scholar
  99. Sakamoto K, Margolles A, van Veen HW, Konings WN (2001) Hop resistance in the beer spoilage bacterium Lactobacillus brevis is mediated by the ATP-binding cassette multidrug transporter HorA. J Bacteriol 183:5371–5375CrossRefPubMedGoogle Scholar
  100. Schiraldi C, Adduci V, Valli V, Maresca C, Giuliano M, Lamberti M, Carteni M, De Rosa M (2003) High cell density cultivation of probiotics and lactic acid production. Biotechnol Bioeng 82:213–222CrossRefPubMedGoogle Scholar
  101. Simões-Barbosa A, Abreu H, Silva Neto A, Gruss A, Langella P (2004) A food-grade delivery system for Lactococcus lactis and evaluation of inducible gene expression. Appl Microbiol Biotechnol 65:61–67CrossRefPubMedGoogle Scholar
  102. Smid EJ, Molenaar D, Hugenholtz J, de Vos WM, Teusink B (2005) Functional ingredient production: application of global metabolic models. Curr Opin Biotechnol 16:190–197CrossRefPubMedGoogle Scholar
  103. Steen A, Buist G, Leenhouts KJ, El Khattabi M, Grijpstra F, Zomer AL, Venema G, Kuipers OP, Kok J (2003) Cell wall attachment of a widely distributed peptidoglycan binding domain is hindered by cell wall constituents. J Biol Chem 278:23874–23881CrossRefPubMedGoogle Scholar
  104. Sybesma W, Starrenburg M, Kleerebezem M, Mierau I, de Vos WM, Hugenholtz JR (2003a) Increased production of folate by metabolic engineering of Lactococcus lactis. Appl Environ Microbiol 69:3069–3076CrossRefPubMedGoogle Scholar
  105. Sybesma W, van den Born E, Starrenburg M, Mierau I, Kleerebezem M, de Vos WM, Hugenholtz J (2003b) Controlled modulation of folate polyglutamyl tail length by metabolic engineering of Lactococcus lactis. Appl Environ Microbiol 69:7101–7107CrossRefPubMedGoogle Scholar
  106. Terzaghi BE, Sandine WE (1975) Improved medium for lactic streptococci and their bacteriophages. Appl Microbiol 29:807–813PubMedGoogle Scholar
  107. Teuber M (1995) The genus Lactococcus. In: Wood BJB, Holzapfel WH (eds) The genera of lactic acid bacteria. Blackie, London, pp 173–234Google Scholar
  108. Ton-That H, Marraffini LA, Schneewind O (2004) Protein sorting to the cell wall envelope of Gram-positive bacteria. Biochim Biophys Acta 11:269–278Google Scholar
  109. van Asseldonk M, de Vos WM, Simons G (1993) Functional analysis of the Lactococcus lactis usp45 secretion signal in the secretion of a homologous proteinase and a heterologous alpha-amylase. Mol Gen Genet 240:428–434PubMedGoogle Scholar
  110. van Kraaij C, de Vos WM, Siezen RJ, Kuipers OP (1999) Lantibiotics: biosynthesis, mode of action and applications. Nat Prod Rep 16:575–587CrossRefPubMedGoogle Scholar
  111. Waters CM, Wells CL, Dunny GM (2003) The aggregation domain of aggregation substance, not the RGD motifs, is critical for efficient internalization by HT-29 enterocytes. Infect Immun 71:5682–5689CrossRefPubMedGoogle Scholar
  112. Waters CM, Hirt H, McCormick JK, Schlievert PM, Wells CL, Dunny GM (2004) An amino-terminal domain of Enterococcus faecalis aggregation substance is required for aggregation, bacterial internalization by epithelial cells and binding to lipoteichoic acid. Mol Microbiol 52:1159–1171CrossRefPubMedGoogle Scholar
  113. Wegmann U, Klein JR, Drumm I, Kuipers OP, Henrich B (1999) Introduction of peptidase genes from Lactobacillus delbrueckii subsp. lactis into Lactococcus lactis and controlled expression. Appl Environ Microbiol 65:4729–4733PubMedGoogle Scholar
  114. Wood BJB, Warner PJ (2003) Genetics of lactic acid bacteria. Kluwer Academic/Plenum, New YorkGoogle Scholar
  115. Wouters JA, Kamphuis HH, Hugenholtz J, Kuipers OP, de Vos WM, Abee T (2000) Changes in glycolytic activity of Lactococcus lactis induced by low temperature. Appl Environ Microbiol 66:3686–3691CrossRefPubMedGoogle Scholar
  116. Zhou L, Manias DA, Dunny GM (2000) Regulation of intron function: efficient splicing in vivo of a bacterial group II intron requires a functional promoter within the intron. Mol Microbiol 37:639–651CrossRefPubMedGoogle Scholar
  117. Zúñiga M, Franke-Fayard B, Venema G, Kok J, Nauta A (2002) Characterization of the putative replisome organizer of the lactococcal bacteriophage r1t. J Virol 76:10234–10244CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.NIZO food researchEdeThe Netherlands

Personalised recommendations