Applied Microbiology and Biotechnology

, Volume 70, Issue 5, pp 541–547 | Cite as

Study on peptide hydrolysis by aminopeptidases from Streptomyces griseus, Streptomyces septatus and Aeromonas proteolytica

  • Jiro Arima
  • Yoshiko Uesugi
  • Masaki Iwabuchi
  • Tadashi HatanakaEmail author
Biotechnologically Relevant Enzymes and Proteins


We developed a spectrophotometric assay for peptide hydrolysis by aminopeptidases (APs). The assay enables the measurement of free amino acids liberated by AP-catalyzed peptide hydrolysis using 4-aminoantipyrine, phenol, peroxidase, and l-amino acid oxidase. We investigated the specificity of bacterial APs [enzymes from Streptomyces griseus (SGAP), Streptomyces septatus (SSAP), and Aeromonas proteolytica (AAP)] toward peptide substrates using this assay method. Although these enzymes most efficiently cleave leucyl derivatives among 20 aminoacyl derivatives, in peptide hydrolysis, the catalytic efficiencies of Phe-Phe hydrolysis by SGAP and SSAP exceed that of Leu-Phe hydrolysis. Furthermore, all enzymes showed the maximum catalytic efficiencies for Phe-Phe-Phe hydrolysis. These results indicate that the hydrolytic activities of bacterial APs are affected by the nature of the penultimate residue or flanking moiety and the length of the peptide substrate.


Streptomyces Peptide Substrate Streptomyces Griseus Peptide Hydrolysis Bulky Side Chain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Allain CC, Poon LS, Chan CS, Richmond W, Fu PC (1974) Enzymatic determination of total serum cholesterol. Clin Chem 20:470–475PubMedGoogle Scholar
  2. Arima J, Iwabuchi M, Hatanaka T (2004) Gene cloning and overproduction of an aminopeptidase from Streptomyces septatus TH-2, and comparison with a calcium-activated enzyme from Streptomyces griseus. Biochem Biophys Res Commun 317:531–538CrossRefPubMedGoogle Scholar
  3. Asano Y, Nakazawa A, Kato Y, Kondo K (1989) Properties of a novel d-stereospecific aminopeptidase from Ochrobactrum anthropi. J Biol Chem 264:14233–14239PubMedGoogle Scholar
  4. Avi-Dor Y, Cutolo E, Paul KG (1954) The assay of hydrogen peroxide in small quantities with horseradish peroxidase as catalyst. Acta Physiol Scand 32:314–319PubMedCrossRefGoogle Scholar
  5. Ben-Meir D, Spungin A, Ashkenazi R, Blumberg S (1993) Specificity of Streptomyces griseus aminopeptidase and modulation of activity by divalent metal ion binding and substitution. Eur J Biochem 212:107–112CrossRefPubMedGoogle Scholar
  6. Bzymek KP, Holz RC (2004) The catalytic role of glutamate 151 in the leucine aminopeptidase from Aeromonas proteolytica. J Biol Chem 279:31018–31025CrossRefPubMedGoogle Scholar
  7. Bzymek KP, D'Souza VM, Chen G, Campbell H, Mitchell A, Holz RC (2004) Function of the signal peptide and N- and C-terminal propeptides in the leucine aminopeptidase from Aeromonas proteolytica. Protein Expr Purif 37:294–305CrossRefPubMedGoogle Scholar
  8. Chevrier B, Schalk C, D'Orchymont H, Rondeau JM, Moras D, Tarnus C (1994) Crystal structure of Aeromonas proteolytica aminopeptidase: a prototypical member of the co-catalytic zinc enzyme family. Structure 2:283–291CrossRefPubMedGoogle Scholar
  9. De Paola CC, Bennett B, Holz RC, Ringe D, Petsko GA (1999) 1-Butaneboronic acid binding to Aeromonas proteolytica aminopeptidase: a case of arrested development. Biochemistry 38:9048–9053CrossRefPubMedGoogle Scholar
  10. Desmarais WT, Bienvenue DL, Bzymek KP, Holz RC, Petsko GA, Ringe D (2002) The 1.20 Å resolution crystal structure of the aminopeptidase from Aeromonas proteolytica complexed with tris: a tale of buffer inhibition. Structure 10:1063–1072CrossRefPubMedGoogle Scholar
  11. Desmond EP, Starnes WL, Behal FJ (1975) Aminopeptidases of Bacillus subtilis. J Bacteriol 124:353–363PubMedGoogle Scholar
  12. Doi E, Shibata D, Matoba T (1981) Modified colorimetric ninhydrin methods for peptidase assay. Anal Biochem 118:173–184PubMedCrossRefGoogle Scholar
  13. Gilboa R, Greenblatt HM, Perach M, Spungin-Bialik A, Lessel U, Wohlfahrt G, Schomburg D, Blumberg S, Shoham G (2000) Interactions of Streptomyces griseus aminopeptidase with a methionine product analogue: a structural study at 1.53 Å resolution. Acta Crystallogr D Biol Crystallogr 56:551–558CrossRefPubMedGoogle Scholar
  14. Gilboa R, Spungin-Bialik A, Wohlfahrt G, Schomburg D, Blumberg S, Shoham G (2001) Interactions of Streptomyces griseus aminopeptidase with amino acid reaction products and their implications toward a catalytic mechanism. Proteins 44:490–504CrossRefPubMedGoogle Scholar
  15. Greenblatt HM, Almog O, Maras B, Spungin-Bialik A, Barra D, Blumberg S, Shoham G (1997) Streptomyces griseus aminopeptidase: x-ray crystallographic structure at 1.75 Å resolution. J Mol Biol 265:620–636CrossRefPubMedGoogle Scholar
  16. Ishibashi N, Sadamori K, Yamamoto O, Kanehisa H, Kouge K, Kikuchi I, Okai H, Fukui S (1987) Bitterness of phenylalanine- and tyrosine-containing peptides. Agric Biol Chem 51:3309–3313Google Scholar
  17. Ishibashi N, Ono I, Kato K, Shigenaga T, Shinoda I, Okai H, Fukui S (1988) Role of the hydrophobic amino acid residue in the bitterness of peptides. Agric Biol Chem 52:91–94Google Scholar
  18. Lowther WT, Matthews BW (2002) Metalloaminopeptidases: common functional themes in disparate structural surroundings. Chem Rev 102:4581–4607CrossRefPubMedGoogle Scholar
  19. Massay V, Curti B (1967) On the reaction mechanism of Crotalus adamanteus L-amino acid oxidase. J Biol Chem 242:1259–1264PubMedGoogle Scholar
  20. Mishima N, Mizumoto K, Iwasaki Y, Nakano H, Yamane T (1997) Insertion of stabilizing loci in vectors of T7 RNA polymerase-mediated Escherichia coli expression systems: a case study on the plasmids involving foreign phospholipase D gene. Biotechnol Prog 13:864–868CrossRefPubMedGoogle Scholar
  21. Prescott JM, Wilkes SH (1976) Aeromonas aminopeptidase. Methods Enzymol 45:530–543PubMedGoogle Scholar
  22. Reiland V, Gilboa R, Spungin-Bialik A, Schomburg D, Shoham Y, Blumberg S, Shoham G (2004) Binding of inhibitory aromatic amino acids to Streptomyces griseus aminopeptidase. Acta Crystallogr D Biol Crystallogr 60:1738–1746CrossRefPubMedGoogle Scholar
  23. Sanderink GJ, Artur Y, Siest G (1988) Human aminopeptidases: a review of the literature. J Clin Chem Clin Biochem 26:795–807PubMedGoogle Scholar
  24. Spungin A, Blumberg S (1989) Streptomyces griseus aminopeptidase is a calcium-activated zinc metalloprotein. Purification and properties of the enzyme. Eur J Biochem 183:471–477CrossRefPubMedGoogle Scholar
  25. Taylor A (1993a) Aminopeptidases: structure and function. FASEB J 7:290–298PubMedGoogle Scholar
  26. Taylor A (1993b) Aminopeptidase: towards a mechanism of action. Trends Biochem Sci 18:167–172PubMedGoogle Scholar
  27. Taylor A (1996) Aminopeptidases. Landes Bioscience Publishers, Austin, TX, pp 1–20Google Scholar
  28. Vosbeck KD, Chow KF, Awad WM Jr (1973) The proteolytic enzymes of the K-1 strain of Streptomyces griseus obtained from a commercial preparation (Pronase). Purification and characterization of the aminopeptidases. J Biol Chem 248:6029–6034PubMedGoogle Scholar
  29. Vosbeck KD, Greenberg BD, Awad WM Jr (1975) The proteolytic enzymes of the K-1 strain of Streptomyces griseus obtained from a commercial preparation (Pronase). Specificity and immobilization of aminopeptidase. J Biol Chem 250:3981–3987PubMedGoogle Scholar
  30. Vosbeck KD, Greenberg BD, Ochoa MS, Whitney PL, Awad WM Jr (1978) Proteolytic enzymes of the K-1 strain of Streptomyces griseus obtained from a commercial preparation (Pronase). Effect of pH, metal ions, and amino acids on aminopeptidase activity. J Biol Chem 253:257–260PubMedGoogle Scholar
  31. Wagner FW, Wilkes SH, Prescott JM (1972) Specificity of Aeromonas aminopeptidase toward amino acid amides and dipeptides. J Biol Chem 247:1208–1210PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Jiro Arima
    • 1
  • Yoshiko Uesugi
    • 1
  • Masaki Iwabuchi
    • 1
  • Tadashi Hatanaka
    • 1
    Email author
  1. 1.Research Institute for Biological Sciences (RIBS)OkayamaJapan

Personalised recommendations