Applied Microbiology and Biotechnology

, Volume 69, Issue 5, pp 515–520 | Cite as

Microbial production of single-cell protein from deproteinized whey concentrates

  • Nadja SchultzEmail author
  • Lifung Chang
  • Achim Hauck
  • Matthias Reuss
  • Christoph Syldatk
Biotechnological Products and Process Engineering


Deproteinized sweet and sour cheese whey concentrates were investigated for their suitability as substrates for the production of single-cell protein with Kluyveromyces marxianus CBS 6556 up to a 100-l scale. An important factor for gaining high cell concentrations was the use of the Crabtree-negative strain K. marxianus CBS 6556. Supplements such as trace elements, ammonium and calcium were required for the complete conversion of sweet whey concentrates into biomass, whereas sour whey concentrates had to be supplemented with ammonium, trace elements and vitamins. After improvement, biomass dry concentrations of up to 50 g l−1 could be reached with Yx/s values of 0.52 for sweet whey and of up to 65 g l−1 with Yx/s values of 0.48 for sour whey concentrates. The chemical oxygen demand of the whey concentrates were reduced by 80%. The cells were used for the analysis of amino acid and ash composition, showing a distinct increase of eight out of ten essential amino acids compared to sweet and sour whey protein and exceeding the World Health Organisation guidelines for valine, leucine, isoleucine, threonine, phenylalanine and tyrosine.


Lactose Chemical Oxygen Demand Cheese Whey Kluyveromyces Marxianus Lactose Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Deproteinized sweet whey concentrate was kindly provided by Milei GmbH, Leutkirch-Adrazhofen, Germany, and deproteinized sour whey concentrate by Nordmilch eG, Edewecht, Germany.


  1. Belem MAF, Lee BH (1998) Production of bioingredients from Kluyveromyces marxianus grown on whey: an alternative. Crit Rev Food Sci Nutr 38:565–598CrossRefPubMedGoogle Scholar
  2. Börgardts P, Krischke W, Trösch W, Brunner H (1998) Integrated bioprocess for the simultaneous production of lactic acid and dairy sewage treatment. Bioprocess Eng 19:321–329CrossRefGoogle Scholar
  3. Daniel H-J, Otto RT, Binder M, Reuss M, Syldatk C (1999) Production of sophorolipids from whey: development of a two-stage process with Cryptococcus curvatus ATCC 20509 and Candida bombicola ATCC 22214 using deproteinized whey concentrates as substrates. Appl Microbiol Biotechnol 51:40–45CrossRefPubMedGoogle Scholar
  4. de Deken RH (1965) The Crabtree effect and its relation to the petite mutation. J Gen Microbiol 44:157–165Google Scholar
  5. de Souza Galvão C, Ledingham WM, de Morais MA (2001) Utilisation of cheese whey as an alternative growth medium for recombinant strains of Kluyveromyces marxianus. Biotechnol Lett 23:1413–1416CrossRefGoogle Scholar
  6. de Wit JN (2001) Lecturer's handbook on whey. European Whey Product Association, BrusselsGoogle Scholar
  7. Ghaly AE, Kamal MA (2004) Submerged yeast fermentation of acid cheese whey for protein production and pollution potential reduction. Water Res 38(3):631–644CrossRefPubMedGoogle Scholar
  8. Ghaly AE, Singh RK (1989) Pollution potential reduction of cheese whey through yeast fermentation. Appl Biochem Biotechnol 22:181–203PubMedCrossRefGoogle Scholar
  9. Gutierrez K, Sanguines L, Carmona J, Perez-Gil F (1999) Saccharomyces cerevisiae yeast as protein source in diets for fattening pigs. Cuban J Agric Sci 33(2):171–177Google Scholar
  10. Kihlberg (1972) The microbe as a source of food. Annu Rev Microbiol 26:427–466PubMedCrossRefGoogle Scholar
  11. Moon NJ, Hammond EG, Glatz BA (1978) Conversion of cheese whey and whey permeate to oil and single-cell protein. Dairy Sci 61:1537–1547CrossRefGoogle Scholar
  12. Mosenthin (1999) Verdauliche Aminosäuren und ideales Protein: Neue Bewertungs- und Bedarfskonzepte in der Schweinefütterung. 2. Fachtagung tierproduktion, Kongressbericht, WarbergGoogle Scholar
  13. Otto RT, Daniel HJ, Pekin G, Müller-Decker K, Fürstenberger G, Reuss M, Syldatk C (1999) Production of sophorolipids from whey: II. Product composition, surface active properties, cytotoxicity and stability against hydrolases by enzymatic treatment. Appl Microbiol Biotechnol 52:495–501CrossRefPubMedGoogle Scholar
  14. Schiller K, Simecek K, Oslage HJ (1972) Mikrobiell produzierte Eiweißfuttermittel in der Tierernährung. Z Tierphysiol, Tierernähr Futtermittelkd 30:246–259Google Scholar
  15. Schulz (1975) Mikroorganismen als Eiweißfuttermittel. Übers Tierernähr 3:177–206Google Scholar
  16. Schulz E, Oslage HJ (1976) Composition and nutritive value of single cell protein. Anim Feed Sci Technol 1:9–24CrossRefGoogle Scholar
  17. Sienkiewicz T, Riedel C-L (1990) Whey and whey utilization. Verlag Th. Mann, GelsenkirchenGoogle Scholar
  18. Sikka SS (1997) Inactivated yeast as a protein supplement in growing pig rations. Int J Anim Sci 12:93–95Google Scholar
  19. Spackmann DH, Stein WH, Moore S (1958) Automatic recording apparatus for use in chromatography of amino acids. Anal Chem 30:1190–1209CrossRefGoogle Scholar
  20. Spark M (2004) Untersuchungen zum Futterwert einer auf Molke produzierten Hefe (Kluyveromyces fragilis) als Eiweissfuttermittel für Absatzferkel. Dissertation, Tierärtzliche Hochschule Hannover, HannoverGoogle Scholar
  21. van Urk H, Postma E, Scheffers WA, van Dijken JP (1989) Glucose transport in Crabtree-positive and Crabtree-negative yeasts. J Gen Microbiol 135:2399–2406PubMedGoogle Scholar
  22. Verband Deutscher Landwirtschaftlicher Untersuchungs- und Forschungsanstalten (VDLUFA) (1985) Methodenbuch Band VI vierte Auflage 1985 inclusive der 5. Ergänzungslieferung von 2000Google Scholar
  23. Verduyn C, Postma E, Scheffers WA, Van Dijken JP (1992) Effect of benzoic acid on metabolic fluxes in yeasts: a continuous-culture study on the regulation of respiration and alcoholic fermentation. Yeast 7:501–517CrossRefGoogle Scholar
  24. Walker GM (1998) Yeast physiology and biotechnology. Wiley, LondonGoogle Scholar
  25. Willetts A, Ugalde U (1987) The production of single-cell-protein from whey. Biotechnol Lett 9:795–800CrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Nadja Schultz
    • 1
    • 2
    Email author
  • Lifung Chang
    • 1
    • 3
  • Achim Hauck
    • 1
  • Matthias Reuss
    • 1
  • Christoph Syldatk
    • 1
    • 2
  1. 1.Universität StuttgartInstitut für BioverfahrenstechnikStuttgartGermany
  2. 2.Engler-Bunte-Institut, Lehrstuhl für Technische BiologieUniversity of Karlsruhe (TH)KarlsruheGermany
  3. 3.Pall Filtration Pte LtdTaipeiTaiwan

Personalised recommendations