Applied Microbiology and Biotechnology

, Volume 68, Issue 5, pp 588–597

Biotechnological production and applications of phytases

  • Stefan Haefner
  • Anja Knietsch
  • Edzard Scholten
  • Joerg Braun
  • Markus Lohscheidt
  • Oskar Zelder


Phytases decompose phytate, which is the primary storage form of phosphate in plants. More than 10 years ago, the first commercial phytase product became available on the market. It offered to help farmers reduce phosphorus excretion of monogastric animals by replacing inorganic phosphates by microbial phytase in the animal diet. Phytase application can reduce phosphorus excretion by up to 50%, a feat that would contribute significantly toward environmental protection. Furthermore, phytase supplementation leads to improved availability of minerals and trace elements. In addition to its major application in animal nutrition, phytase is also used for processing of human food. Research in this field focuses on better mineral absorption and technical improvement of food processing. All commercial phytase preparations contain microbial enzymes produced by fermentation. A wide variety of phytases were discovered and characterized in the last 10 years. Initial steps to produce phytase in transgenic plants were also undertaken. A crucial role for its commercial success relates to the formulation of the enzyme solution delivered from fermentation. For liquid enzyme products, a long shelf life is achieved by the addition of stabilizing agents. More comfortable for many customers is the use of dry enzyme preparations. Different formulation technologies are used to produce enzyme powders that retain enzyme activity, are stable in application, resistant against high temperatures, dust-free, and easy to handle.


  1. Adeola O (1999) Effect of supplemental phytase on trace mineral availability for swine. In: Coelho MB, Kornegay ET (eds) Phytase in animal nutrition and waste management, 2nd rev. edn. BASF, Mexico, pp 465–480Google Scholar
  2. Bach, Vilsboll, Sommer, Novozymes (2003) Method for improving particle compositions. US 2004/0130968Google Scholar
  3. Barendse, van Doesum, Gouwens DSM et al (1993) Stabilized aqueous liquid formulations of phytase. WO 93/16175 A1Google Scholar
  4. Barendse, Harz, Gist-Brocades (1996) Salt-stabilized enzyme preparations. EP 0758018 A1Google Scholar
  5. Barendse, Meesters, Harz, Gist-Brocades (1998) Carbohydrate-based enzyme granulates. WO 98/54980Google Scholar
  6. Berridge MJ, Irvine RF (1984) Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature 312(5992):315–321CrossRefPubMedGoogle Scholar
  7. Billington DC (1993) The inositol phosphates. Chemical synthesis and biological significance. Verlag Chemie, WeinheimGoogle Scholar
  8. Bindu S, Somashekar D, Joseph R (1998) A comparative study on permeabilization treatments for in situ determination of phytase of Rhodotorula gracilis. Lett Appl Microbiol 27:336–340CrossRefGoogle Scholar
  9. Bogar B, Szakacs G, Tengerdy RP, Linden JC, Pandey A (2003a) Optimization of phytase production by solid substrate fermentation. J Ind Microbiol Biotech 30:183–189Google Scholar
  10. Bogar B, Szakacs G, Pandey A, Abdulhameed S, Linden JC, Tengerdy RP (2003b) Production of phytase by Mucor racemosus in solid-state fermentation. Biotechnol Prog 19:312–319CrossRefPubMedGoogle Scholar
  11. Brinch-Pedersen H, Olesen A, Rasmussen SK, Holm PB (2000) Generation of transgenic wheat (Triticum aestivum L.) for constitutive accumulation of an Aspergillus phytase. Mol Breed 6:195–206CrossRefGoogle Scholar
  12. Brink EJ, Dekker PR, van Beresteijn ECH, Beynen AC (1991) Inhibitory effect of dietary soybean protein vs. casein on magnesium absorption in rats. J Nutr 121:1374–1381PubMedGoogle Scholar
  13. Brugger, Lehmann, Wyss, Roche (1996) Phytase formulations. EP 0969089 A1Google Scholar
  14. Caldwell RA (1992) Effect of calcium and phytic acid on the activation of trypsinogen and the stability of trypsin. J Agric Food Chem 40:43–46CrossRefGoogle Scholar
  15. Casey A, Walsh G (2004) Identification and characterization of a phytase of potential commercial interest. J Biotechnol 110:313–322CrossRefPubMedGoogle Scholar
  16. CAST (Council for Agricultural Science and Technology) (2002) Animal diet modification to decrease the potential for nitrogen and phosphorus pollution. Issue Paper 21:1–16Google Scholar
  17. Chen CC, Wu PH, Huang CT, Cheng KJ (2004) A Pichia pastoris fermentation strategy for enhancing the heterologous expression of an Escherichia coli phytase. Enzyme Microb Technol 35:315–320CrossRefGoogle Scholar
  18. Cho JS, Lee CW, Kang SH, Lee JC, Bok JD, Moon YS, Lee HG, Kim SC, Choi YJ (2003) Purification and characterization of a phytase from Pseudomonas syringae MOK1. Curr Microbiol 47:290–294CrossRefPubMedGoogle Scholar
  19. Choi YM, Noh DO, Cho SH, Lee HK, Suh HJ, Chung SH (1999) Isolation of a phytase-producing Bacillus sp. KHU-10 and its phytase production. J Microbiol Biotechnol 9:223–226Google Scholar
  20. Cosgrove DJ (1966) The chemistry and biochemistry of inositol polyphosphates. Rev Pure Appl Chem 16:209–215Google Scholar
  21. Dasgupta S, Dasgupta D, Sen M, Biswas S, Biswas BB (1996) Interaction of myoinositol trisphosphate–phytase complex with the receptor for intercellular Ca2+ mobilization in plants. Biochem 35(15):4994–5001CrossRefGoogle Scholar
  22. De Angelis M, Gallo G, Corbo MR, McSweeney PLH, Faccia M, Giovine M, Gobbetti M (2003) Phytase activity in sourdough lactic acid bacteria: purification and characterization of a phytase from Lactobacillus sanfranciscensis CB1. Int J Food Microbiol 87:259–270CrossRefPubMedGoogle Scholar
  23. De Lima R, Bordin, Novozyme et al (1997) Enzyme-containing granules and process for the production thereof. WO 97/39116Google Scholar
  24. Denbow DM, Grabau EA, Lacy GH, Kornegay ET, Russell DR, Umbeck PF (1998) Soybeans transformed with a fungal phytase gene improve phosphorus availability for broilers. Poultry Sci 77:878–881Google Scholar
  25. Deshpande SS, Cheryan M (1984) Effects of phytic acid, divalent cations, and their interactions on alpha-amylase activity. J Food Sci 49:516–519Google Scholar
  26. Dvorakova J, Kopecky J, Havlicek V, Kren V (2000) Formation of myo-inositol phosphates by Aspergillus niger 3-phytase. Folia Microbiol 45(2):128–132CrossRefGoogle Scholar
  27. Eeckhout W, De Paepe M (1994) Total phosphorus, phytate phosphorus and phytase activity in plant feedstuffs. Anim Feed Sci Technol 47:19–29CrossRefGoogle Scholar
  28. European Union (2004a) Official Journal of the European Union C 50/52, published 25/02/2004Google Scholar
  29. European Union (2004b) Official Journal of the European Union C 50/95, published 25/02/2004Google Scholar
  30. European Union (2004c) Official Journal of the European Union C 50/112, published 25/02/2004Google Scholar
  31. European Union (2004d) Official Journal of the European Union L 270/12, published 18/08/2004Google Scholar
  32. Farrell DJ, Martin EA, Du Preez JJ, Bongarts M, Betts M, Sudaman A, Thomson E (1993) The beneficial effects of a microbial phytase in diets of broiler chickens and ducklings. J Anim Physiol Anim Nutr 69:278–283Google Scholar
  33. Furrer OJ, Stauffer W (1987) P-Verlagerung im Boden und Auswaschung. In: FAC Oktobertagung 1987: Phosphat in Landwirtschaft und Umwelt, Eidgenössische Forschungsanstalt für Agrikulturchemie und Umwelthygiene. FAC, Liebefeld-Bern, pp 83–90Google Scholar
  34. Ghani, Genencor (2000) Protein-containing granules and granule formulations. WO 01/29170Google Scholar
  35. Gibson D (1987) Production of extracellular phytase from Aspergillus ficuum on starch media. Biotechnol Lett 9:305–310CrossRefGoogle Scholar
  36. Golovan S, Wang G, Zhang J, Forsberg CW (2000) Characterization and overproduction of the Escherichia coli appA encoded bifunctional enzyme that exhibits both phytase and acid phosphatase activities. Can J Microbiol 46:59–71CrossRefPubMedGoogle Scholar
  37. Golovan SP, Hayes MA, Phillips JP, Forsberg CW (2001a) Transgenic mice expressing bacterial phytase as a model for phosphorus pollution control. Nat Biotechnol 19:429–433CrossRefPubMedGoogle Scholar
  38. Golovan SP, Meidinger RG, Ajakaiye A, Cottrill M, Wiederkehr MZ, Barney D, Plante C, Pollard J, Fan MZ, Hayes MA, Laursen J, Hjorth JP, Hacker RR, Phillips JP, Forsberg CW (2001b) Pigs expressing salivary phytase produce low-phosphorus manure. Nat Biotechnol 19:741–745CrossRefPubMedGoogle Scholar
  39. Greiner R, Konietzny U, Jany KD (1993) Purification and characterization of two phytases from Escherichia coli. Arch Biochem Biophys 303:107–113CrossRefPubMedGoogle Scholar
  40. Gutknecht K (1997) Green genes: alfalfa biofarming is about to take root. Wisc Agrict, Mid-March:8–10Google Scholar
  41. Hamada JS (1996) Isolation and identification of the multiple forms of soybean phytases. J Am Oil Chem Soc 73:1143–1151Google Scholar
  42. Han Y, Lei XG (1999) Role of glycosylation in the functional expression of an Aspergillus niger phytase (phyA) in Pichia pastoris. Arch Biochem Biophys 364:83–90CrossRefPubMedGoogle Scholar
  43. Han Y, Wilson DB, Lei XG (1999) Expression of an Aspergillus niger phytase gene (phyA) in Saccharomyces cerevisiae. Appl Environ Microbiol 65:1915–1918PubMedGoogle Scholar
  44. Hara A, Ebina S, Kondo A, Funagua T (1985) A new type of phytase from Typha latifolia L. Agric Biol Chem 49:3539–3544Google Scholar
  45. Harland BF, Oberleas D (1999) Phytic acid complex in feed ingredients. In: Coelho MB, Kornegay ET (eds) Phytase in animal nutrition and waste management, 2nd rev edn. BASF, Mexico, pp 69–76Google Scholar
  46. Haros M, Rosell CM, Benedito C (2001) Use of fungal phytase to improve breadmaking performance of whole wheat bread. J Agric Food Chem 49(11):5450–5454CrossRefPubMedGoogle Scholar
  47. Hayakawa T, Toma Y, Igaue I (1989) Purification and characterization of acid phosphatases with or without phytase activity from rice bran. Agric Biol Chem 53:1475–1483Google Scholar
  48. Hong K, Ma Y, Li M (2001) Solid-state fermentation of phytase from cassava dregs. Appl Biochem Biotechnol 91–93:777–785CrossRefGoogle Scholar
  49. Hong C, Cheng K, Tseng T, Wang C, Liu L, Yu S, Hong CY, Cheng KJ, Tseng TH, Wang CS, Liu LF, Yu SM (2004) Production of two highly active bacterial phytases with broad pH optima in germinated transgenic rice seeds. Transgenic Res 13:29–39CrossRefPubMedGoogle Scholar
  50. Howson SJ, Davis RP (1983) Production of phytate hydrolyzing enzymes by some fungi. Enzyme Microb Technol 5:377–389CrossRefGoogle Scholar
  51. Huebel F, Beck E (1996) Maize root phytase. Purification, characterization, and localization of enzyme activity and its putative substrate. Plant Physiol 112:1429–1436PubMedGoogle Scholar
  52. Hurrell RF, Reddy MB, Juillerat MA, Cook JD (2003) Degradation of phytic acid in cereal porridges improves iron absorption by human subjects. Am J Clin Nutr 77(5):1213–1219PubMedGoogle Scholar
  53. Hwang WZ (1999) Screening of phytase-producing bacterial strains from soil and characterization of their phytase enzymes. Guoli Zhongxing Daxue Nonglin Xuebao 48:15–25Google Scholar
  54. Jacobsen, Jensen, Novo Nordisk (1992) Use of an enzyme containing granulate and method for production of a pelletized fodder. WO 92/12645Google Scholar
  55. Jongbloed AW, de Jonge L, Kemme PA, Mroz Z, Kies AK (1997) Phytates, phytase, phosphorus, protein and performance in pigs. Proc. 6th Forum on Anim. Nutr., BASF, Ludwigshafen, Germany, pp 92–106Google Scholar
  56. Jongbloed AW, Kemme PA, Mroz Z (1999) Effect of microbial phytase on apparent ileal digestibilities of nitrogen and amino acids in pig diets. In: Coelho MB, Kornegay ET (eds) Phytase in animal nutrition and waste management, 2nd rev edn. BASF, Mexico, pp 507–514Google Scholar
  57. Kerovuo J, Lauraeus M, Nurminen P, Kalkkinen N, Apajalahti J (1998) Isolation, characterization, molecular gene cloning, and sequencing of a novel phytase from Bacillus subtilis. Appl Environ Microbiol 64:2079–2085PubMedGoogle Scholar
  58. Kerovuo J, Rouvinen J, Hatzack F (2000) Analysis of myo-inositol hexakisphosphate hydrolysis by Bacillus phytase: indication of a novel reaction mechanism. Biochem J 352:623–628CrossRefPubMedGoogle Scholar
  59. Kim YO, Kim HK, Bae KS, Yu JH, Oh TK (1998a) Purification and properties of a thermostable phytase from Bacillus sp. DS11. Enzyme Microb Technol 22:2–7CrossRefGoogle Scholar
  60. Kim DS, Godber JS, Kim HR (1999a) Culture conditions for a new phytase-producing fungus. Biotechnol Lett 21:1077–1081CrossRefGoogle Scholar
  61. Kim YO, Lee JK, Oh BC, Oh TK (1999b) High-level expression of a recombinant thermostable phytase in Bacillus subtilis. Biosci Biotechnol Biochem 63:2205–2207CrossRefGoogle Scholar
  62. Kim HW, Kim YO, Lee JH, Kim KK, Kim YJ (2003) Isolation and characterization of a phytase with improved properties from Citrobacter braakii. Biotechnol Lett 25:1231–1234CrossRefPubMedGoogle Scholar
  63. Klein Holkenborg ABM, van der Lee AG, de Bot PHM, Hemke G, Kies AK (2003) Effect of different phytase sources on ileal phosphorus digestibility in layers. Proc 14th Eur Symp Poult Nutr, Lillehammer, Norway, pp 40–41Google Scholar
  64. Konietzny U, Greiner R (2002) Molecular and catalytic properties of phytate-degrading enzymes (phytases). Int J Food Sci Technol 37:91–812Google Scholar
  65. Kornegay ET (1999) Effectiveness of Natuphos™ phytase in improving the bioavalabilities of phosphorus and other nutrients in corn–soybean meal diets for young pigs. In: Coelho MB, Kornegay ET (eds) Phytase in animal nutrition and waste management, 2nd rev edn. BASF, Mexico, pp 249–258Google Scholar
  66. Krishna C, Nokes SE (2001) Predicting vegetative inoculum performance to maximize phytase production in solid-state fermentation using response surface methodology. J Ind Microbiol Biotech 26:161–170CrossRefGoogle Scholar
  67. Krystofova S, Varecka L, Vollek V, Grimova J, Betina V (1994) Growth and conidiation of Trichoderma viride are affected by non-steroidal antiinflammatory agents. Folia Microbiol (Prague) 39(1):44–48Google Scholar
  68. Lambrechts C, Boze H, Segueilha L, Moulin G, Galzy P (1993) Influence of culture conditions on the biosynthesis of Schwanniomyces castelli phytase. Biotechnol Lett 15:399–404CrossRefGoogle Scholar
  69. Lan GQ, Abdullah N, Jalaludin S, Ho YW (2002) Optimization of carbon and nitrogen sources for phytase production by Mitsuokella jalaludinii, a new rumen bacterial species. Lett Appl Microbiol 35:157–161CrossRefPubMedGoogle Scholar
  70. Lehmann M, Pasamontes L, Lassen SF, Wyss M (2000) The consensus concept for thermostability engineering of proteins. Biochim Biophys Acta 1543:408–415PubMedGoogle Scholar
  71. Lei XG, Stahl C (2001) Biotechnological development of effective phytases for mineral nutrition and environmental protection. Appl Microbiol Biotechnol 57:474–481CrossRefPubMedGoogle Scholar
  72. Li J, Hegeman CE, Hanlon RW, Lacy GH, Denbow DM, Grabau EA (1997) Secretion of active recombinant phytase from soybean cell-suspension cultures. Plant Physiol 114:1103–1111CrossRefPubMedGoogle Scholar
  73. Mandviwala TN, Khire JM (2000) Production of high activity thermostable phytase from thermotolerant Aspergillus niger in solid state fermentation. J Ind Microbiol Biotechnol 24:237–243CrossRefGoogle Scholar
  74. Martin EA, Farrell DJ (1994) The effect of microbial phytase in rice bran based diets fed to grower finisher diets. Proc Aust Poult Sci Symp 6:88–91Google Scholar
  75. Martin JA, Murphy RA, Power RFG (2003) Cloning and expression of fungal phytases in genetically modified strains of Aspergillus awamori. J Ind Microbiol Biotech 30:568–576CrossRefGoogle Scholar
  76. Maugenest S, Martinez I, Godin B, Perez P, Lescure AM (1999) Structure of two maize phytase genes and their spatio-temporal expression during seedling development. Plant Mol Biol 39:503–514CrossRefPubMedGoogle Scholar
  77. Mayer AF, Hellmuth K, Schlieker H, Lopez-Ulibarri R, Oertel S, Dahlems U, Strasser AWM, van Loon APGM (1999) An expression system matures: a highly efficient and cost-effective process for phytase production by recombinant strains of Hansenula polymorpha. Biotechnol Bioeng 63:373–381CrossRefPubMedGoogle Scholar
  78. McCollum EV, Hart EB (1908) On the occurrence of a phytin-splitting enzyme in animal tissue. J Biol Chem 4:497–500Google Scholar
  79. Michell RH (1975) Inositol phospholipids and cell surface receptor function. Biochim Biophys Acta 415(1):47–81Google Scholar
  80. Miksch G, Kleist S, Friehs K, Flaschel E (2002) Overexpression of the phytase from Escherichia coli and its extracellular production in bioreactors. Appl Microbiol Biotechnol 59:685–694CrossRefPubMedGoogle Scholar
  81. Misset O (2003) Phytase. Food Sci Technol 122:687–706Google Scholar
  82. Mohanna C, Nys Y (1999) Changes in zinc and manganese availability in broiler chicks induced by vegetal and microbial phytases. Anim Feed Sci Technol 77:241–253CrossRefGoogle Scholar
  83. Mullaney EJ, Daly CB, Ullah AHJ (2000) Advances in phytase research. Adv Appl Microbiol 47:157–199PubMedGoogle Scholar
  84. Mullaney EJ, Daly CB, Kim T, Porres JM, Lei XG, Sethumadhavan K, Ullah AHJ (2002) Site-directed mutagenesis of Aspergillus niger NRRL 3135 phytase at residue 300 to enhance catalysis at pH 4.0. Biochem Biophys Res Commun 297:1016–1020CrossRefPubMedGoogle Scholar
  85. Nagai Y, Funahashi S (1962) Phytase (myo-inositol hexaphosphate phosphohydrolase) from wheat bran. Agric Biol Chem 26:794–803Google Scholar
  86. Nakamura Y, Fukuhara H, Sano K (2000) Secreted phytase activities of yeasts. Biosci Biotechnol Biochem 64:841–844CrossRefPubMedGoogle Scholar
  87. Nakano T, Joh T, Tokumoto E, Hayakawa T (1999) Purification and characterization of phytase from bran of Triticum aestivum L. Cv. Nourin #61. Food Sci Technol Res 5:18–23Google Scholar
  88. Nout MJR, Rambouts FM (1990) Recent developments in tempe research. A review. J Appl Bacteriol 69:609–633Google Scholar
  89. Oh BC, Choi WC, Park S, Kim YO, Oh TK (2004) Biochemical properties and substrate specificities of alkaline and histidine acid phytases. Appl Microbiol Biotechnol 63:362–372CrossRefPubMedGoogle Scholar
  90. Paditz K, Kluth H, Rodehutscord M (2004) Relationship between graded doses of three microbial phytases and digestible phosphorus in pigs. Anim Sci 78:429–438Google Scholar
  91. Pallauf J, Hoehler D, Rimbach G (1992) Effect of microbial phytase supplementation to a maize–soya diet on the apparent absorption of Mg, Fe, Cu, Mn and Zn and parameters of Zn status in piglets. J Anim Physiol Anim Nutr 68:1–9CrossRefGoogle Scholar
  92. Park SC, Oh BC, Rhee MH, Jeong KS, Lee KW, Song JC, Oh TK (2003) The enzyme activity of a novel phytase from Bacillus amyloliquefaciens DS11 and its potential use as a feed pellet. J Gen Appl Microbiol 49:129–133CrossRefPubMedGoogle Scholar
  93. Pasamontes L, Haiker M, Wyss M, Tessier M, Van Loon APGM (1997) Gene cloning, purification, and characterization of a heat-stable phytase from the fungus Aspergillus fumigatus. Appl Environ Microbiol 63:1696–1700PubMedGoogle Scholar
  94. Pen J, Verwoerd TC, van Paridon PA, Beudeker RF, van den Elzen PJM, Geerse K, van der Klis JD, Versteegh HAJ, van Ooyen AJJ, Joekema A (1993) Phytase-containing transgenic seeds as a novel feed additive for improved phosphorus utilization. Bio/Technology 11:811–814CrossRefGoogle Scholar
  95. Phillippy BQ, Mullaney EJ (1997) Expression of an Aspergillus niger Phytase (phyA) in Escherichia coli. J Agric Food Chem 45:3337–3342CrossRefGoogle Scholar
  96. Pointillart A (1988) Phytate phosphorus utilisation in growing pigs. In: Buraczewska L, Buraczewska S, Zebrowska T (eds) Digestive physiology in the pig. Proc. 4th International Seminar. Polish Academy of Science, Jablonna, Poland, pp 192–196Google Scholar
  97. Ponstein AS, Bade JB, Verwoerd TC, Molendijk L, Storms J, Beudeker RF, Pen J (2002) Stable expression of Phytase (phyA) in canola (Brassica napus) seeds: towards a commercial product. Mol Breed 10:31–44CrossRefGoogle Scholar
  98. Powar VK, Jagannathan V (1982) Purification of phytase-specific phosphatase from Bacillus subtilis. J Bacteriol 151:1102–1108PubMedGoogle Scholar
  99. Quan CS, Tian WJ, Fan SD, Kikuchi YI (2004) Purification and properties of a low-molecular-weight phytase from Cladosporium sp. FP-1. J Biosci Bioeng 97:260–266PubMedGoogle Scholar
  100. Rapoport S, Leva E, Guest GM (1941) Phytase in plasma and erythrocytes of vertebrates. J Biol Chem 139:621–632Google Scholar
  101. Ravindran V, Bryden WL, Kornegay ET (1995) Phytates: occurrence, bioavailability and implications in poultry nutrition. Poult Avian Biol Rev 6:125–143Google Scholar
  102. Ravindran V, Cabahug S, Bryden WL, Selle PH (1999) The influence of microbial phytase on the bioavailability of protein and energy in broiler chickens. In: Coelho MB, Kornegay ET (eds) Phytase in animal nutrition and waste management, 2nd rev edn. BASF, Mexico, pp 573–584Google Scholar
  103. Rehms H, Barz W (1995) Degradation of stachyose, raffinose, melibiose and sucrose by different tempe-producing Rhizopus fungi. Appl Microbiol Biotechnol 44(1–2):47–52PubMedGoogle Scholar
  104. Richardson AE, Hadobas PA (1997) Soil isolates of Pseudomonas spp. that utilize inositol phosphates. Can J Microbiol 43:509–516PubMedCrossRefGoogle Scholar
  105. Rodehutscord M (2001) Current phosphorus evaluation systems for livestock in Germany. Lohmann-Inf 25:1–8Google Scholar
  106. Rodriguez E, Han Y, Lei XG (1999) Cloning, sequencing, and expression of an Escherichia coli acid phosphatase/phytase gene (appA2) isolated from pig colon. Biochem Biophys Res Commun 257:117–123CrossRefPubMedGoogle Scholar
  107. Rodriguez E, Mullaney EJ, Lei XG (2000a) Expression of the Aspergillus fumigatus phytase gene in Pichia pastoris and characterization of the recombinant enzyme. Biochem Biophys Res Commun 268:373–378CrossRefPubMedGoogle Scholar
  108. Rodriguez E, Wood Z, Karplus A, Lei XG (2000b) Site-directed mutagenesis improves catalytic efficiency and thermostability of Escherichia coli pH 2.5 acid phosphatase/phytase expressed in Pichia pastoris. Arch Biochem Biophys 382:105–112CrossRefPubMedGoogle Scholar
  109. Rutherfurd SM, Edwards AC, Selle PH (1997) Effect of phytase on lysine-rice pollard complexes. In: Cranwell PD (ed) Manipulating pig production VI. Australasian Pig Science Association, Canberra, pp 248Google Scholar
  110. Sabu A, Sarita S, Pandey A, Bogar B, Szakacs G, Soccol CR (2002) Solid-state fermentation for production of phytase by Rhizopus oligosporus. Appl Biochem Biotechnol 102–103:251–260CrossRefGoogle Scholar
  111. Sajidan A, Farouk A, Greiner R, Jungblut P, Mueller EC, Borriss R (2004) Molecular and physiological characterisation of a 3-phytase from soil bacterium Klebsiella sp. ASR1. Appl Microbiol Biotechnol 65:110–118CrossRefPubMedGoogle Scholar
  112. Samanta S, Dalal B, Biswas S, Biswas BB (1993) Myoinositol tris-phosphate–phytase complex as an elicitor in calcium mobilization in plants. Biochem Biophys Res Commun 191(2):427–434CrossRefPubMedGoogle Scholar
  113. Sandberg AS, Brune M, Carlsson NG, Hallberg L, Skoglund E, Rossander-Hulthen L (1999) Inositol phosphates with different numbers of phosphate groups influence iron absorption in humans. Am J Clinical Nutr 70:240–246Google Scholar
  114. Sano K, Fukuhara H, Nakamura Y (1999) Phytase of the yeast Arxula adeninivorans. Biotechnol Lett 21:33–38CrossRefGoogle Scholar
  115. Schoener FJ, Hoppe PP (2002) The effects of phytase in poultry nutrition. In: McNab JM, Boorman KN (eds) Poultry feedstuffs: supply, composition and nutritive value. CAB International, Wallingford, UK, pp 363–373Google Scholar
  116. Sebastian S, Touchburn SP, Chavez ER (1998) Implications of phytic acid and supplemental microbial phytase in poultry nutrition: a review. World's Poult Sci J 54:27–47CrossRefGoogle Scholar
  117. Segueilha L, Lambrechts C, Boze H, Moulin G, Galzy P (1992) Purification and properties of the phytase from Schwanniomyces castellii. J Ferment Bioeng 74:7–11CrossRefGoogle Scholar
  118. Shah V, Parekh LJ (1990) Phytase from Klebsiella Sp. No. PG-2: purification and properties. Indian J Biochem Biophys 27:98–102PubMedGoogle Scholar
  119. Shimizu M (1993) Purification and characterization of phytase and acid phosphatase produced by Aspergillus oryzae K1. Biosci Biotechnol Biochem 57:1364–1365CrossRefGoogle Scholar
  120. Simon O, Igbasan F (2002) In vitro properties of phytases from various microbial origins. Int J Food Sci Technol 37:813–822CrossRefGoogle Scholar
  121. Siren M (1986a) Stabilized pharmaceutical and biological material composition. Pat. SE 003165Google Scholar
  122. Siren M (1986b) New myo-inositol triphosphoric acid isomer. Pat. SW 052950Google Scholar
  123. Sreeramulu G, Srinivasa DS, Nand K, Joseph R (1996) Lactobacillus amylovorus as a phytase producer in submerged culture. Lett Appl Microbiol 23:385–388Google Scholar
  124. Stahl CH, Wilson DB, Lei XG (2003) Comparison of extracellular Escherichia coli AppA phytases expressed in Streptomyces lividans and Pichia pastoris. Biotechnol Lett 25:827–831CrossRefPubMedGoogle Scholar
  125. Tambe SM, Kaklij GS, Kelkar SM, Parekh LJ (1994) Two distinct molecular forms of phytase from Klebsiella aerogenes: evidence for unusually small active enzyme peptide. J Ferment Bioeng 77:23–27CrossRefGoogle Scholar
  126. Temperton H, Dudley J, Pickering GL (1965a) Phosphorus requirements of poultry. IV. The effects on growing pullets of feeding diets containing no animal protein or supplementary phosphorus. Br Poult Sci 6:125–133PubMedGoogle Scholar
  127. Temperton H, Dudley J, Pickering GL (1965b) Phosphorus requirements of poultry. V. The effects during the subsequent laying year of feeding growing diets containing no animal protein or supplementary phosphorus. Br Poult Sci 6:135–141PubMedGoogle Scholar
  128. Thiel U, Weigand E (1992) Influence of dietary zinc and microbial phytase supplementation on Zn retention and zinc excretion in broiler chicks. Proc. XIX World's Poultry Congress, Vol 3. WPSA, Amsterdam, pp 460Google Scholar
  129. Tye AJ, Siu FKY, Leung TYC, Lim BL (2002) Molecular cloning and the biochemical characterization of two novel phytases from B. subtilis 168 and B. licheniformis. Appl Microbiol Biotechnol 59:190–197CrossRefPubMedGoogle Scholar
  130. Ullah AHJ, Sethumadhavan K, Mullaney EJ, Ziegelhoffer T, Austin-Phillips S (1999) Characterization of recombinant fungal phytase (phyA) expressed in tobacco leaves. Biochem Biophys Res Commun 264:201–206CrossRefPubMedGoogle Scholar
  131. Ullah AHJ, Sethumadhavan K, Lei XG, Mullaney EJ (2000) Biochemical characterization of cloned Aspergillus fumigatus phytase (phyA). Biochem Biophys Res Commun 275:279–285CrossRefPubMedGoogle Scholar
  132. Ullah AHJ, Sethumadhavan K, Mullaney EJ, Zieglhoffer T, Austin-Phillips S (2002) Cloned and expressed fungal phyA gene in alfalfa produces a stable phytase. Biochem Biophy Res Commun 290:1343–1348CrossRefGoogle Scholar
  133. Van der Klis JD, Versteegh HAJ (1991) Ileal absorption of phosphorus in lightweight laying hens using microbial phytase and various calcium contents in laying hen feed. Spelderholt Publication No. 563. Spelderholt, Beekbergen, The NetherlandsGoogle Scholar
  134. van Hartingsveldt W, van Zeijl CMJ, Harteveld GM, Gouka RJ, Suykerbuyk MEG, Luiten RGM, van Paridon PA, Selten GCM, Veenstra AE, van Gorcom RFM, van den Hondel CAMJJ (1993) Cloning, characterization and overexpression of the phytase-encoding gene (phyA) of Aspergillus niger. Gene 127:87–94CrossRefPubMedGoogle Scholar
  135. Van Gorcom RFM, van Hartignsveldt W, van Paridon PA, Veenstra AE, Luiten RGM, Selten G (1990) Cloning and expression of microbial phytase. EP 0420358 B1Google Scholar
  136. Verwoerd TC, Van Paridon PA, Van Ooyen AJJ, van Lent JWM, Hoekema A, Pen J (1995) Stable accumulation of Aspergillus niger phytase in transgenic tobacco leaves. Plant Physiol 109:1199–1205CrossRefPubMedGoogle Scholar
  137. Vohra A, Satyanarayana T (2001) Phytase production by the yeast, Pichia anomala. Biotechnol Lett 23:551–554CrossRefGoogle Scholar
  138. Vohra A, Satyanarayana T (2002) Purification and characterization of a thermostable and acid-stable phytase from Pichia anomala. World J Microbiol Biotechnol 18:687–691CrossRefGoogle Scholar
  139. Vohra A, Satyanarayana T (2004) A cost-effective cane molasses medium for enhanced cell-bound phytase production by Pichia anomala. J Appl Microbiol 97:471–476CrossRefPubMedGoogle Scholar
  140. Vohra P, Gray GA, Kartzer FH (1965) Phytic acid–metal complexes. Proc Soc Exp Biol Med 120:447–449PubMedGoogle Scholar
  141. Wang Y, Yao B, Zeng H, Shi X, Cao S, Yuan T, Fan Y (2001) Purification and property of neutral phytase form Bacillus subtilis. Weishengwu Xuebao 41:198–203Google Scholar
  142. Wendt P, Rodehutscord M (2004) Studies on the efficiency of two phytase preparations in pekin ducks. In: Rodehutscord M (ed) Tagungsband 8. Tagung Schweine- und Geflügelernährung. Martin-Luther-Universität, Halle-Wittenberg, pp 109–111Google Scholar
  143. Wyss M, Brugger R, Kronenberger A, Remy R, Fimbel R, Oesterhelt G, Lehmann M, Van Loon APGM (1999) Biochemical characterization of fungal phytases (myo-inositol hexakisphosphate phosphohydrolases): catalytic properties. Appl Environ Microbiol 65:367–373PubMedGoogle Scholar
  144. Xiong AS, Yao Q-HRA, Peng RH, Li M, Fan HQ, Guo MJ, Zhang SL (2004) Isolation, characterization, and molecular cloning of the cDNA encoding a novel phytase from Aspergillus niger 113 and high expression in Pichia pastoris. J Biochem Mol Biol 37:282–291PubMedGoogle Scholar
  145. Yanke LJ, Bae HD, Selinger LB, Cheng KJ (1998) Phytase activity of anaerobic ruminal bacteria. Microbiology (Reading) 144:1565–1573Google Scholar
  146. Yi Z, Kornegay ET, Denbow DM (1996) Effect of microbial phytase on nitrogen and amino acid digestibility and nitrogen retention of turkey poults fed corn–soybean meal diets. Poultry Sci 75:979–990Google Scholar
  147. Yip W, Wang L, Cheng C, Wu W, Lung S, Lim BL (2003) The introduction of a phytase gene from Bacillus subtilis improved the growth performance of transgenic tobacco. Biochem Biophys Res Commun 310:1148–1154CrossRefPubMedGoogle Scholar
  148. Zhang ZB, Kornegay ET, Radcliffe JS, Denbow DM, Veit HP, Larsen CT (2000) Comparison of genetically engineered microbial and plant phytase for young broilers. Poultry Sci 79:709–717Google Scholar
  149. Zimmermann B, Lantzsch HJ, Mosenthin R, Schoener FJ, Biesalski HK, Drochner W (2002) Comparative evaluation of the efficacy of cereal and microbial phytases in growing pigs fed diets with marginal phosphorus supply. J Sci Food Agric 82:1298–1304CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Stefan Haefner
    • 1
  • Anja Knietsch
    • 1
  • Edzard Scholten
    • 1
  • Joerg Braun
    • 1
  • Markus Lohscheidt
    • 1
  • Oskar Zelder
    • 1
  1. 1.BASF AktiengesellschaftLudwigshafenGermany

Personalised recommendations