Applied Microbiology and Biotechnology

, Volume 68, Issue 1, pp 82–90 | Cite as

Effect of substrate feed rate on recombinant protein secretion, degradation and inclusion body formation in Escherichia coli

  • Maria Boström
  • Katrin Markland
  • Anna Maria Sandén
  • My Hedhammar
  • Sophia Hober
  • Gen Larsson
Applied Genetics and Molecular Biotechnology

Abstract

The effect of changes in substrate feed rate during fedbatch cultivation was investigated with respect to soluble protein formation and transport of product to the periplasm in Escherichia coli. Production was transcribed from the PmalK promoter; and the cytoplasmic part of the production was compared with production from the PlacUV5 promoter. The fusion protein product, Zb-MalE, was at all times accumulated in the soluble protein fraction except during high-feed-rate production in the cytoplasm. This was due to a substantial degree of proteolysis in all production systems, as shown by the degradation pattern of the product. The product was also further subjected to inclusion body formation. Production in the periplasm resulted in accumulation of the full-length protein; and this production system led to a cellular physiology where the stringent response could be avoided. Furthermore, the secretion could be used to abort the diauxic growth phase resulting from use of the PmalK promoter. At high feed rate, the accumulation of acetic acid, due to overflow metabolism, could furthermore be completely avoided.

References

  1. Boos W, Shuman H (1998) Maltose/maltodextrin system of Escherichia coli: transport, metabolism and regulation. Microbiol Mol Biol Rev 62:204–229PubMedGoogle Scholar
  2. Boström M, Larsson G (2002) Introduction of the carbohydrate-activated promoter Pmalk for recombinant protein production. Appl Microbiol Biotechnol 59:231–238CrossRefPubMedGoogle Scholar
  3. Boström M, Larsson G (2004) Process design for recombinant protein production based on the promoter, PmalK. Appl Microbiol Biotechnol (in press)Google Scholar
  4. Bylund F, Collet E, Enfors SO, Larsson G (1998) Substrate gradient formation in the large-scale bioreactor lowers cell yield and increases by-product formation. Bioprocess Eng 18:171–180CrossRefGoogle Scholar
  5. Casabadan MJ (1976) Transposition and fusion of the lac genes to selected promoters in Escherichia coli using bacteriophage lambda and mu. J Mol Biol 104:541–545PubMedGoogle Scholar
  6. Cashel M, Gentry DR, Hernandez VJ, Vinella D (1996) The stringent response. In: Neidhardt C (ed) Escherichia coli and Salmonella, 2nd edn. ASM, Washington, D.C., pp 1458–1496Google Scholar
  7. Cserjan-Puschmann M, Kramer W, Duerrschmid E, Striedner G, Bayer K (1999) Metabolic approaches for the optimisation of recombinant fermentation processes. Appl Microbiol Biotechnol 53:43–50CrossRefPubMedGoogle Scholar
  8. Dong H, Nilsson L, Kurland CG (1995) Gratuitous overexpression of genes in Escherichia coli leads to growth inhibition and ribosome destruction. J Bacteriol 6:1497–1504Google Scholar
  9. Grabherr R, Nilsson E, Striedner G, Bayer K (2002) Stabilizing plasmid copy number to improve recombinant protein production. Biotechnol Bioeng 77:142–147Google Scholar
  10. Gräslund T, Ehn M, Lundin G, Hedhammar M, Uhlén M, Nygren PÅ, Hober S (2001) Strategy for highly selective ion-exchange capture using a charge-polarizing fusion partner. J Chromatogr A 942:157–166CrossRefGoogle Scholar
  11. Hendrick JP, Hartl F-U (1993) Molecular functions of heat-shock proteins. Annu Rev Biochem 62:349–384CrossRefGoogle Scholar
  12. Larsson G, Törnkvist M (1996) Rapid sampling, cell inactivation and evaluation of low extracellular glucose concentrations during fed-batch cultivation. J Biotechnol 49:69–82CrossRefPubMedGoogle Scholar
  13. Lendenmann U, Egli T (1995) Is Escherichia coli growing in glucose-limited chemostat culture able to utilize other sugars without lag? Microbiology 141:71–78PubMedGoogle Scholar
  14. Lin HY, Hanschke R, Nicklisch S, Nietsche T, Jarchow R, Schwan C, Reimschneider S, Meyer S, Gupta A, Hecker M, Neubauer P (2001) Cellular responses to strong overproduction of recombinant genes in Escherichia coli. In: Merten OW, et al (ed) Recombinant protein production: a comparative view on host physiology. Kluwer, AmsterdamGoogle Scholar
  15. Monod J (1949) The growth of bacterial cultures. Annu Rev Microbiol 3:371–394CrossRefGoogle Scholar
  16. Neubauer P, Åhman M, Törnkvist M, Larsson G, Enfors SO (1995) Response of guanosine tetraphosphate to glucose fluctuations in fed-batch cultivations of Escherichia coli. J Biotechnol 43:195–204Google Scholar
  17. Pryor KAD, Leiting B (1997) High-level expression of soluble protein in Escherichia coli using a His6-tag and maltose-binding-protein double affinity fusion system. Protein Expr Purif 10:309–319CrossRefGoogle Scholar
  18. Prytz I, Sandén AM, Nyström T, Farewell A, Wahlström Å, Förberg C, Pragai Z, Barer M, Harwood C, Larsson G (2003) Fed-Batch production of recombinant β-galactosidase using the universal stress promoters uspA and uspB in high cell density cultivations. Biotechnol Bioeng 83:595–603Google Scholar
  19. Sandén AM, Prytz I, Tubulekas I, Förberg C, Le H, Hektor A, Neubauer P, Pragai Z, Harwood C, Ward A, Picon A, Teixeira de Mattos J, Postma P, Farewell A, Nyström T, Reeh S, Pedersen S, Larsson G (2003) Limiting factors in Escherichia coli fed-batch production of recombinant protein. Biotechnol Bioeng 81:158–166CrossRefPubMedGoogle Scholar
  20. Shokri A, Larsson G (2004) Characterisation of the Escherichia coli membrane structure and function during fed batch cultivation. Microb Cell Fact 3:9CrossRefGoogle Scholar
  21. Striedner G, Cserjan-Puschmann M, Pötschacher F, Bayer K (2003) Tuning the transcription rate of recombinant protein in strong Escherichia coli expression systems through repressor titration. Biotechnol Prog 19:1427–1432Google Scholar
  22. Witholt B, Boekhout M, Kingma J, Heerikhuizen H, Leij L de (1976) An efficient and reproducible procedure for the formation of spheroplasts from variously grown Escherichia coli. Anal Biochem 74:160–170CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Maria Boström
    • 1
  • Katrin Markland
    • 1
  • Anna Maria Sandén
    • 1
  • My Hedhammar
    • 1
  • Sophia Hober
    • 1
  • Gen Larsson
    • 1
  1. 1.The Swedish Centre for Bioprocess TechnologyKTHStockholmSweden

Personalised recommendations