Applied Microbiology and Biotechnology

, Volume 68, Issue 1, pp 91–97 | Cite as

Monoxenic production of the entomopathogenic nematode Steinernema carpocapsae using culture media containing agave juice (aguamiel) from Mexican maguey-pulquero (Agave spp). Effects of the contents of nitrogen, carbohydrates and fat on infective juvenile production

  • Marco-Antonio Islas-López
  • René Sanjuan-Galindo
  • Adriana-Inés Rodríguez-Hernández
  • Norberto Chavarría-HernándezEmail author
Applied Microbial and Cell Physiology


The production of infective juvenile stages (IJ) of the entomopathogenic nematode Steinernema carpocapsae in the presence of its symbiotic bacterium Xenorhabdus nematophilus was carried out in orbitally agitated bottles. Four complex culture media (M1–M4) were used, containing from 8% to 28% (by vol.) agave juice (aguamiel) from Mexican maguey-pulquero (Agave spp) as the main carbohydrate source. After 20 days of fermentation, a maximum viable IJ concentration of 249,000 IJ/ml and an initial nematode population multiplication factor of ×620 were achieved when medium M4 was used (aguamiel concentration in this medium was 28% by vol.). M4 medium contained (w/v): 0.3% total nitrogen, 3.2% total carbohydrates and 3.0% total fat. According to the results obtained, total carbohydrates concentration appeared to be of great importance in obtaining high IJ concentrations.


Symbiotic Bacterium Entomopathogenic Nematode Infective Juvenile Monoxenic Culture Agave Juice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Financial support from SIZA-CONACyT, Mexico, is acknowledged (grant 20020801002, including a scholarship for M.-A.I.-L.). Many thanks are due to the independent cultivator organization OMETEOTL A.C., Tlaxcala, Mexico. Also, the technical assistance of J. Batalla-Mayoral, A. García-García and J. Espino-García is gratefully acknowledged


  1. Akhurst RJ (1980) Morphological and functional dimorphism in Xenorhabdus spp, bacteria symbiotically associated with the insect pathogenic nematodes Neoaplectana and Heterorhabditis. J Gen Microbiol 121:303–309Google Scholar
  2. AOAC International (1999) Official methods of analysis of AOAC international. AOAC International, Washington, D.C.Google Scholar
  3. Buecher EJ, Popiel I (1989) Liquid culture of the entomogenous nematode Steinernema feltiae with its bacterial symbiont. J Nematol 21:500–504Google Scholar
  4. Chavarría-Hernández N, de la Torre M (2001) Population growth kinetics of the nematode, Steinernema feltiae, in submerged monoxenic culture. Biotechnol Lett 23:311–315CrossRefGoogle Scholar
  5. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356Google Scholar
  6. Ehlers RU (2001) Mass production of entomopathogenic nematodes for plant protection. Appl Microbiol Biotechnol 56:623–633PubMedGoogle Scholar
  7. Ehlers RU, Lunau S, Krasomil-Osterfeld K, Osterfeld KH (1998) Liquid culture of the entomopathogenic nematode–bacterium complex Heterorhabditis megidis/Photorhabdus luminesces. Biocontrol 43:77–86CrossRefGoogle Scholar
  8. Forst S, Dowds B, Boemare N, Stackebrandt E (1997) Xenorhabdus and Photorabdus spp: bugs that kill bugs. Annu Rev Microbiol 51:47–72CrossRefPubMedGoogle Scholar
  9. Friedman M, Langston S, Pollitt S (1989) Mass production in liquid culture of insect-killing nematodes (US patent 5,023,183). Patent WO 89/04602Google Scholar
  10. Guerrero-Guerrero R (1985) El pulque. Mortiz/INAH, MexicoGoogle Scholar
  11. Lindegren JE, Valero KA, Mackey BE (1993) Simple in vivo production and storage methods for Steinernema carpocapsae infective juveniles. J Nematol 25:193–197Google Scholar
  12. Lopez-y-Lopez EV, Chavarria-Hernandez N, Fernández-Sumano P, de la Torre M (2000) Fermentation processes for bioinsecticide production. An overview. Recent Res Dev Biotechnol Bioeng 3:1–20Google Scholar
  13. Martínez del Campo-Padilla MG (1999) Determinación, cuantificación e hidrólisis de inulina en el aguamiel de agave pulquero, Agave atrovirens. BSc thesis, National Autonomous University of Mexico, MexicoGoogle Scholar
  14. Mijangos-Santiago MB (1994) Estudio de la fabricación y tratamiento de la miel de maguey. BSc thesis, National Autonomous University of Mexico, MexicoGoogle Scholar
  15. Narro-Robles J, Gutiérrez-Avila JH, López-Cervantes M, Borges G, Rosovsky H (1992) La mortalidad por cirrosis hepática en México II. Exceso de mortalidad y consumo de pulque. Salud Publica Mex 34:388–405PubMedGoogle Scholar
  16. Neves JM, Teixeira JA, Simões N, Mota M (2001) Effect or airflow rate on yields of Steinernema carpocapsae Az 20 in liquid culture in an external-loop airlift bioreactor. Biotechnol Bioeng 72:369–373PubMedGoogle Scholar
  17. Pace GW, Grote W, Pitt DE, Pitt JM (1986) Liquid culture of nematodes. Patent WO86/01074Google Scholar
  18. Ramírez J (1995) Los magueyes, plantas de infinitos usos. (Biodiversitas 3) Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, MexicoGoogle Scholar
  19. Samish M, Glazer I (2001) Entomophatogenic nematodes for the biocontrol of ticks. Trends Parasitol 17:368–371PubMedGoogle Scholar
  20. Sánchez-Marroquín A, Vierna L, Manrique S, Hiranaka H (1969) Producción extracelular de L-lisina por mutantes de Ustilago maydis, en jugo de Agave sp. Rev Latinoam Microbiol Parasitol 11:183–190Google Scholar
  21. Sánchez-Marroquín A, Zermeño C, Zamarripa A, García J (1966) Nuevo substrato para la propagación de levadura alimenticia en escala de laboratorio. Rev Latinoam Microbiol Parasitol 8:189–195Google Scholar
  22. Shapiro-llan DI, Gaugler R (2002) Production technology for entomophatogenic nematodes and their bacterial symbionts. J Ind Microbiol Biotechnol 28:137–146Google Scholar
  23. Steinkraus KH (2002) Fermentations in world food processing. Comp Rev Food Sci Food Safety 1:23–32Google Scholar
  24. Surrey MR, Davies RJ (1996) Pilot-scale liquid culture and harvesting of an entomopathogenic nematode, Heterorhabditis bacteriophora. J Invertebr Pathol 67:92–99CrossRefGoogle Scholar
  25. US Department of Agriculture (2002) USDA nutrient database for standard reference.
  26. Vivas EI, Goodrich-Blair H (2001) Xenorhabdus nematophilus as a model for host-bacterium interactions: rpoS is necessary for mutualism with nematodes. J Bacteriol 183:4687–4693PubMedGoogle Scholar
  27. Volgyi A, Fodor A, Szentirmal A, Forst S (1998) Phase variation in Xenorhabdus nematophilus. Appl Environ Microbiol 64:1188–1193Google Scholar
  28. Woodring JL, Kaya HK (1988) Steinernematid and heterorhabditid nematodes: a handbook of biology and techniques. Arkansas Agricultural Experimental Station, ArkansasGoogle Scholar
  29. Wright DJ, Perry RN (2002) Phisiology and biochemistry. In: Gaugler R (ed) Entomopathogenic nematology. CABI, London, pp 145–168Google Scholar
  30. Yang H, Jian H, Zhang Sh, Zhang G (1997) Quality of the entomopathogenic nematode Steinernema carpocapsae produced on different media. Biol Control 10:193–198CrossRefGoogle Scholar
  31. Yoo SK, Brown I, Gaugler R (2000) Liquid media development for Heterorhabditis bacteriophora: lipid source and concentration. Appl Microbiol Biotechnol 54:759–763PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Marco-Antonio Islas-López
    • 1
  • René Sanjuan-Galindo
    • 1
  • Adriana-Inés Rodríguez-Hernández
    • 1
  • Norberto Chavarría-Hernández
    • 1
    Email author
  1. 1.Centro de Investigaciones en Ciencia y Tecnología de los Alimentos, Instituto de Ciencias AgropecuariasUniversidad Autónoma del Estado de HidalgoTulancingoMexico

Personalised recommendations