Advertisement

Applied Microbiology and Biotechnology

, Volume 66, Issue 5, pp 465–474 | Cite as

Archaea in protozoa and metazoa

  • Marianne Lange
  • Peter Westermann
  • Birgitte Kiær Ahring
Mini-Review

Abstract

The presence of Archaea is currently being explored in various environments, including extreme geographic positions and eukaryotic habitats. Methanogens are the dominating archaeal organisms found in most animals, from unicellular protozoa to humans. Many methanogens can contribute to the removal of hydrogen, thereby improving the efficiency of fermentation or the reductive capacity of energy-yielding reactions. They may also be involved in tissue damage in periodontal patients. Recent molecular studies demonstrated the presence of Archaea other than methanogens in some animals—but so far, not in humans. The roles of these microorganisms have not yet been established. In the present review, we present the state of the art regarding the archaeal microflora in animals.

Keywords

Archaea Bacterial Vaginosis Rumen Fluid Methanomicrobiales Acetogenic Bacterium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We are grateful to Familien Hede–Nielsens Fond, Denmark, and the Danish SNF Centre “Archaea: Biodiversity and Evolution” for financial support.

References

  1. Anklin-Mühlemann R, Bignell DE, Veivers PC, Leuthold RH, Slaytor M (1995) Morphological, microbiological and biochemical-studies of the gut flora in the fungus-growing termite Macrotermes subhyalinus. J Insect Physiol 41:929–940Google Scholar
  2. Ansorg R, Rath PM, Runde V, Beelen DW (2003) Influence of intestinal decontamination using metronidazole on the detection of methanogenic Archaea in bone marrow transplant recipients. Bone Marrow Transplant 31:117–119CrossRefPubMedGoogle Scholar
  3. Barns SM, Fundyga RE, Jeffries MW, Pace NR (1994) Remarkable archaeal diversity detected in a Yellowstone National Park hot spring environment. Proc Natl Acad Sci USA 91:1609–1613PubMedGoogle Scholar
  4. Belay N, Mukhopadhyay B, Conway de Macario EC, Galask R, Daniels L (1990) Methanogenic bacteria in human vaginal samples. J Clin Microbiol 28:1666–1668PubMedGoogle Scholar
  5. Blaxter KL, Clapperton JL (1965) Prediction of amount of methane produced by ruminants. Br J Nutr 19:511–522PubMedGoogle Scholar
  6. Brauman A, Kane MD, Labat M, Breznak JA (1992) Genesis of acetate and methane by gut bacteria of nutritionally diverse termites. Science 257:1384–1387Google Scholar
  7. Brauman A, Doré J, Eggleton P, Bignell D, Breznak JA, Kane MD (2001) Molecular phylogenetic profiling of prokaryotic communities in guts of termites with different feeding habits. FEMS Microbiol Ecol 35:27–36Google Scholar
  8. Brusa T, Canzi E, Allievi L, Delpuppo E, Ferrari A (1993) Methanogens in the human intestinal-tract and oral cavity. Curr Microbiol 27:261–265Google Scholar
  9. Buckley DH, Graber JR, Schmidt TM (1998) Phylogenetic analysis of nonthermophilic members of the kingdom Crenarchaeota and their diversity and abundance in soils. Appl Environ Microbiol 64:4333–4339PubMedGoogle Scholar
  10. Christl SU, Gibson GR, Cummings JH (1992) Role of dietary sulfate in the regulation of methanogenesis in the human large-intestine. Gut 33:1234–1238PubMedGoogle Scholar
  11. Conway De Macario E, Macario AJL, Miller TL, Wolin MJ (1987) Antigenic diversity of methanogenic bacteria from intestinal tracts of animals. Syst Appl Microbiol 9:210–213Google Scholar
  12. Cruden DL, Markovetz AJ (1984) Microbial aspects of the cockroach hindgut. Arch Microbiol 138:131–139CrossRefPubMedGoogle Scholar
  13. Dermoumi HL, Ansorg RAM (2001) Isolation and antimicrobial susceptibility testing of fecal strains of the archaeon Methanobrevibacter smithii. Chemotherapy 47:177–183CrossRefPubMedGoogle Scholar
  14. Doré J, Pochart P, Bernalier A, Goderel I, Morvan B, Rambaud JC (1995) Enumeration of H2 utilizing methanogenic archaea, acetogenic and sulfate-reducing bacteria from human feces. FEMS Microbiol Ecol 17:279–284Google Scholar
  15. Eckburg PB, Lepp PW, Relman DA (2003) Archaea and their potential role in human disease. Infect Immun 71:591–596CrossRefPubMedGoogle Scholar
  16. El Oufir L, Flourie B, Bruley V des, Barry JL, Cloarec D, Bornet F, Galmiche JP (1996) Relations between transit time, fermentation products, and hydrogen consuming flora in healthy humans. Gut 38:870–877PubMedGoogle Scholar
  17. Embley TM, Finlay BJ (1994) The use of small-subunit ribosomal-RNA sequences to unravel the relationships between anaerobic ciliates and their methanogen endosymbionts. Microbiology 140:225–235PubMedGoogle Scholar
  18. Faguy DM (2003) Lateral gene transfer (LGT) between Archaea and Escherichia coli is a contributor to the emergence of novel infectious disease. Infect Dis 3:13–16CrossRefGoogle Scholar
  19. Fenchel T, Finlay BJ (1992) Production of methane and hydrogen by anaerobic ciliates containing symbiotic methanogens. Arch Microbiol 157:475–480Google Scholar
  20. Fenchel T, Finlay BJ (1995) Ecology and evolution in anoxic worlds. Oxford University, OxfordGoogle Scholar
  21. Florin TH, Zhu G, Kirk KM, Martin NG (2000) Shared and unique environmental factors determine the ecology of methanogens in humans and rats. Am J Gastroenterol 95:2872–2879PubMedGoogle Scholar
  22. Florin THJ, Jabbar IA (1994) A possible role for bile-acid in the control of methanogenesis and the accumulation of hydrogen gas in the human colon. J Gastroenterol Hepatol 9:112–117PubMedGoogle Scholar
  23. Forterre P, Brochier C, Philippe H (2002) Evolution of the Archaea. Theor Popul Biol 61:409–422CrossRefPubMedGoogle Scholar
  24. Friedrich MW, Schmitt-Wagner D, Lueders T, Brune A (2001) Axial differences in community structure of Crenarchaeota and Euryarchaeota in the highly compartmentalized gut of the soil-feeding termite Cubitermes orthognathus. Appl Environ Microbiol 67:4880–4890CrossRefPubMedGoogle Scholar
  25. Fröhlich J, König H (1999) Ethidium bromide: a fast fluorescent staining procedure for the detection of symbiotic partnership of flagellates and prokaryotes. J Microbiol Methods 35:121–127CrossRefPubMedGoogle Scholar
  26. Gijzen HJ, Barugahare M (1992) Contribution of anaerobic protozoa and methanogens to hindgut metabolic-activities of the american cockroach, Periplaneta americana. Appl Environ Microbiol 58:2565–2570PubMedGoogle Scholar
  27. Greisen K, Loeffelholz M, Purohit A, Leong D (1994) PCR primers and probes for the 16S rRNA gene of most species of pathogenic bacteria, including bacteria found in cerebrospinal fluid. J Clin Microbiol 32:335–351PubMedGoogle Scholar
  28. Hackstein JH, Stumm CK (1994) Methane production in terrestrial arthropods. Proc Natl Acad Sci USA 91:5441–5445PubMedGoogle Scholar
  29. Hackstein JH (1997) Eukaryotic molecular biodiversity: systematic approaches for the assessment of symbiotic associations. Antonie Van Leeuwenhoek 72:63–76CrossRefPubMedGoogle Scholar
  30. Hackstein JHP, Alen TA van, Camp HO den, Smits A, Mariman E (1995) Intestinal methanogenesis in primates—a genetic and evolutionary approach. Dtsch Tieraerzl Wochenschr 102:152–154Google Scholar
  31. Hackstein JHP, Alen TA van (1996) Fecal methanogens and vertebrate evolution. Evolution 50:559–572Google Scholar
  32. Hackstein JHP, Vogels GD (1997) Endosymbiotic interactions in anaerobic protozoa. Antonie Van Leeuwenhoek 71:151–158CrossRefPubMedGoogle Scholar
  33. Huber H, Hohn MJ, Rachel R, Fuchs T, Wimmer VC, Stetter KO (2002) A new phylum of Archaea represented by a nanosized hyperthermophilic symbiont. Nature 417:63–67CrossRefPubMedGoogle Scholar
  34. Jarvis GN, Strompl C, Burgess DM, Skillman LC, Moore ER, Joblin KN (2000) Isolation and identification of ruminal methanogens from grazing cattle. Curr Microbiol 40:327–332CrossRefPubMedGoogle Scholar
  35. Javor B, Requadt C, Stoekenius W (1982) Box-shaped halophilic bacteria. J Bacteriol 151:1532–1542PubMedGoogle Scholar
  36. Joblin KN, Matsui H, Naylor GE, Ushida K (2002) Degradation of fresh ryegrass by methanogenic co-cultures of ruminal fungi grown in the presence or absence of Fibrobacter succinogenes. Curr Microbiol 45:46–53CrossRefPubMedGoogle Scholar
  37. Johnson KA, Johnson DE (1995) Methane emissions from cattle. J Anim Sci 73:2483–2492PubMedGoogle Scholar
  38. Jones WJ, Nagle DP, Whitman WB (1987) Methanogens and the diversity of Archaebacteria. Microbiol Rev 51:135–177PubMedGoogle Scholar
  39. Jurgens G, Glockner F, Amann R, Saano A, Montonen L, Likolammi M, Munster U (2000) Identification of novel Archaea in bacterioplankton of a boreal forest lake by phylogenetic analysis and fluorescent in situ hybridization. FEMS Microbiol Ecol 34:45–56CrossRefPubMedGoogle Scholar
  40. Kajs TM, Fitzgerald JA, Buckner RY, Coyle GA, Stinson BS, Morel JG, Levitt MD (1997) Influence of a methanogenic flora on the breath H2 and symptom response to ingestion of sorbitol or oat fiber. Am J Gastroenterol 92:89–94PubMedGoogle Scholar
  41. Keay S, Zhang CO, Baldwin BR, Alexander RB (1999) Polymerase chain reaction amplification of bacterial 16S rRNA genes in prostate biopsies from men without chronic prostatitis. Urology 53:487–491CrossRefPubMedGoogle Scholar
  42. König H, Hartmann E, Karcher U (1994) Pathways and principles of the biosynthesis of methanobacterial cell-wall polymers. Syst Appl Microbiol 16:510–517Google Scholar
  43. Konings WN, Albers SV, Koning S, Driessen AJ (2002) The cell membrane plays a crucial role in survival of bacteria and archaea in extreme environments. Antonie Van Leeuwenhoek 81:61–72CrossRefPubMedGoogle Scholar
  44. Krishnan L, Sad S, Patel GB, Sprott GD (2001) The potent adjuvant activity of archaeosomes correlates to the recruitment and activation of macrophages and dendritic cells in vivo. J Immunol 166:1885–1893PubMedGoogle Scholar
  45. Kroes I, Lepp PW, Relman DA (1999) Bacterial diversity within the human subgingival crevice. Proc Natl Acad Sci USA 96:14547–14552CrossRefPubMedGoogle Scholar
  46. Kulik EM, Sandmeier H, Hinni K, Meyer J (2001) Identification of archaeal rDNA from subgingival dental plaque by PCR amplification and sequence analysis. FEMS Microbiol Lett 196:129–133CrossRefPubMedGoogle Scholar
  47. Leadbetter JR, Breznak JA (1996) Physiological ecology of Methanobrevibacter cuticularis sp. nov. and Methanobrevibacter curvatus sp. nov., isolated from the hindgut of the termite Reticulitermes flavipes. Appl Environ Microbiol 62:3620–3631Google Scholar
  48. Leadbetter JR, Crosby LD, Breznak JA (1998) Methanobrevibacter filiformis sp. nov., A filamentous methanogen from termite hindguts. Arch Microbiol 169:287–292CrossRefPubMedGoogle Scholar
  49. Leclerc M, Bernalier A, Donadille G, Lelait M (1997) H2/CO2 metabolism in acetogenic bacteria isolated from the human colon. Anaerobe 3:307–315CrossRefGoogle Scholar
  50. Lemke T, Alen T van, Hackstein JH, Brune A (2001) Cross-epithelial hydrogen transfer from the midgut compartment drives methanogenesis in the hindgut of cockroaches. Appl Environ Microbiol 67:4657–4661CrossRefPubMedGoogle Scholar
  51. Lepp PW, Brinig MM, Ouverney CC, Palm K, Armitage GC, Relman DA (2004) Methanogenic Archaea and human periodontal disease. Proc Natl Acad Sci USA 101:6176–6181CrossRefPubMedGoogle Scholar
  52. Lin C, Raskin L, Stahl DA (1997) Microbial community structure of gastrointesinal tracts of domestic animals: comparative analyses using rRNA targetted oligonucleotide probes. FEMS Microbiol Ecol 22:281–294Google Scholar
  53. Lin C, Miller TL (1998) Phylogenetic analysis of Methanobrevibacter isolated from feces of humans and other animals. Arch Microbiol 169:397–403CrossRefPubMedGoogle Scholar
  54. Lu JJ, Perng CL, Lee SY, Wan CC (2000) Use of PCR with universal primers and restriction endonuclease digestions for detection and identification of common bacterial pathogens in cerebrospinal fluid. J Clin Microbiol 38:2076–2080PubMedGoogle Scholar
  55. Mackie RI, Sghir A, Gaskins HR (1999) Developmental microbial ecology of the neonatal gastrointestinal tract. Am J Clin Nutr 69:1035S–1045SPubMedGoogle Scholar
  56. Maczulak AE, Wolin MJ, Miller TL (1989) Increase in colonic methanogens and total anaerobes in aging rats. Appl Environ Microbiol 55:2468–2473PubMedGoogle Scholar
  57. Maczulak AE, Wolin MJ, Miller TL (1993) Amounts of viable anaerobes, methanogens, and bacterial fermentation products in feces of rats fed high-fiber or fiber-free diets. Appl Environ Microbiol 59:657–662PubMedGoogle Scholar
  58. Margot H, Acebal C, Toril E, Amils R, Puentes JLF (2002) Consistent association of crenarchaeal Archaea with sponges of the genus Axinella. Mar Biol 140:739–745CrossRefGoogle Scholar
  59. Mariani BD, Martin DS, Levine MJ, Booth REJ, Tuan RS (1996) Polymerase chain reaction detection of bacterial infection in total knee arthroplasty. Clin Orthop 11–22Google Scholar
  60. Marteau P, Pochart P, Dore J, Bera-Maillet C, Bernalier A, Corthier G (2001) Comparative study of bacterial groups within the human cecal and fecal microbiota. Appl Environ Microbiol 67:4939–4942CrossRefPubMedGoogle Scholar
  61. McInerney JO, Wilkinson M, Patching JW, Embley TM, Powell R (1995) Recovery and phylogenetic analysis of novel archaeal rRNA sequences from a deep-sea deposit feeder. Appl Environ Microbiol 61:1646–1648PubMedGoogle Scholar
  62. Miller TL, Wolin MJ (1982) Enumeration of Methanobrevibacter smithii in human feces. Arch Microbiol 131:14–18PubMedGoogle Scholar
  63. Miller TL, Wolin MJ, Conway de Macario EC, Macario AJL (1982) Isolation of Methanobrevibacter smithii from human feces. Appl Environ Microbiol 43:227–232PubMedGoogle Scholar
  64. Miller TL, Wolin MJ (1983) Stability of Methanobrevibacter smithii populations in the microbial-flora excreted from the human large bowel. Appl Environ Microbiol 45:317–318PubMedGoogle Scholar
  65. Miller TL, Wolin MJ (1985) Methanosphaera stadtmaniae gen.nov., sp.nov.—a species that forms methane by reducing methanol with hydrogen. Arch Microbiol 141:116–122PubMedGoogle Scholar
  66. Morvan B, Bonnemoy F, Fonty G, Gouet P (1996) Quantitative determination of H2-utilizing acetogenic and sulfate-reducing bacteria and methanogenic archaea from digestive tract of different mammals. Curr Microbiol 32:129–133CrossRefPubMedGoogle Scholar
  67. O’Connor EM, Shand RF (2002) Halocins and sulfolobicins: the emerging story of Archaeal protein and peptide antibiotics. J Ind Microbiol Biotechnol 28:23–31CrossRefPubMedGoogle Scholar
  68. Ohkuma M, Noda S, Horikoshi K, Kudo T (1995) Phylogeny of symbiotic methanogens in the gut of the termite Reticulitermes speratus. FEMS Microbiol Lett 134:45–50CrossRefPubMedGoogle Scholar
  69. Ohkuma M, Kudo T (1996) Phylogenetic diversity of the intestinal bacterial community in the termite Reticulitermes speratus. Appl Environ Microbiol 62:461–468PubMedGoogle Scholar
  70. Ohkuma M, Noda S, Kudo T (1999) Phylogenetic relationships of symbiotic methanogens in diverse termites. FEMS Microbiol Lett 171:147–153CrossRefPubMedGoogle Scholar
  71. Patel GB, Agnew BJ, Deschatelets L, Fleming LP, Sprott GD (2000) In vitro assessment of archaeosome stability for developing oral delivery systems. Int J Pharm 194:39–49CrossRefPubMedGoogle Scholar
  72. Pochart P, Lemann F, Flourie B, Pellier P, Goderel I, Rambaud JC (1993) Pyxigraphic sampling to enumerate methanogens and anaerobes in the right colon of healthy humans. Gastroenterology 105:1281–1285PubMedGoogle Scholar
  73. Prangishvili D, Holz I, Stieger E, Nickell S, Kristjansson JK, Zillig W (2000) Sulfolobicins, specific proteinaceous toxins produced by strains of the extremely thermophilic archaeal genus Sulfolobus. J Bacteriol 182:2985–2988CrossRefPubMedGoogle Scholar
  74. Preston CM, Wu KY, Molinski TF, DeLong EF (1996) A psychrophilic crenarchaeon inhabits a marine sponge: Cenarchaeum symbiosum gen. nov., sp. nov. Proc Natl Acad Sci USA 93:6241–6246CrossRefPubMedGoogle Scholar
  75. Robert C, Bernalier-Donadille A (2003) The cellulolytic microflora of the human colon: evidence of microcrystalline cellulose-degrading bacteria in methane-excreting subjects. FEMS Microbiol Ecol 46:81–89Google Scholar
  76. Robichaux M, Howell M, Boopathy R (2003) Growth and activities of sulfate-reducing and methanogenic bacteria in human oral cavity. Curr Microbiol 47:12–16CrossRefPubMedGoogle Scholar
  77. Rutili A, Canzi E, Brusa T, Ferrari A (1996) Intestinal methanogenic bacteria in children of different ages. New Microbiol 19:227–234PubMedGoogle Scholar
  78. Schmitt-Wagner D, Brune A (1999) Hydrogen profiles and localization of methanogenic activities in the highly compartmentalized hindgut of soil-feeding higher termites (Cubitermes spp.). Appl Environ Microbiol 65:4490–4496PubMedGoogle Scholar
  79. Shang S, Chen Z, Yu X (2001) Detection of bacterial DNA by PCR and reverse hybridization in the 16S rRNA gene with particular reference to neonatal septicemia. Acta Paediatr 90:179–183CrossRefPubMedGoogle Scholar
  80. Sharp R, Ziemer CJ, Stern MD, Stahl DA (1998) Taxon-specific associations between protozoal and methanogen populations in the rumen and a model rumen system. FEMS Microbiol Ecol 26:71–78Google Scholar
  81. Shinzato N, Matsumoto T, Yamaoka I, Oshima T, Yamagishi A (1999) Phylogenetic diversity of symbiotic methanogens living in the hindgut of the lower termite Reticulitermes speratus analyzed by PCR and in situ hybridization. Appl Environ Microbiol 65:837–840PubMedGoogle Scholar
  82. Sleigh J, Cursons R, La Pine M (2001) Detection of bacteraemia in critically ill patients using 16S rDNA polymerase chain reaction and DNA sequencing. Intensive Care Med 27:1269–1273CrossRefPubMedGoogle Scholar
  83. Smith PH, Hungate RE (1958) Isolation and Characterization of Methanobacterium ruminantium n.sp. J Bacteriol 75:713–718PubMedGoogle Scholar
  84. Sprenger WW, Belzen MC van, Rosenberg J, Hackstein JH, Keltjens JT (2000) Methanomicrococcus blatticola gen. nov., sp. nov., a methanol- and methylamine-reducing methanogen from the hindgut of the cockroach Periplaneta americana. Int J Syst Evol Microbiol 50: 1989–1999PubMedGoogle Scholar
  85. Sprott GD, Tolson DL, Patel GB (1997) Archaeosomes as novel antigen delivery systems. FEMS Microbiol Lett 154:17–22CrossRefPubMedGoogle Scholar
  86. Sprott GD, Brisson J, Dicaire CJ, Pelletier AK, Deschatelets LA, Krishnan L, Patel GB (1999) A structural comparison of the total polar lipids from the human archaea Methanobrevibacter smithii and Methanosphaera stadtmanae and its relevance to the adjuvant activities of their liposomes. Biochim Biophys Acta 1440:275–288PubMedGoogle Scholar
  87. Strocchi A, Furne J, Ellis C, Levitt MD (1994) Methanogens outcompete sulfate-reducing bacteria for H2 in the human colon. Gut 35:1098–1101PubMedGoogle Scholar
  88. Suau A, Bonnet R, Sutren M, Godon JJ, Gibson GR, Collins MD, Dore J (1999) Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut. Appl Environ Microbiol 65:4799–4807PubMedGoogle Scholar
  89. Swidsinski A, Ladhoff A, Pernthaler A, Swidsinski S, Loening-Baucke V, Ortner M, Weber J, Hoffmann U, Schreiber S, Dietel M, Lochs H (2002) Mucosal flora in inflammatory bowel disease. Gastroenterology 122:44–54PubMedGoogle Scholar
  90. Tajima K, Nagamine T, Matsui H, Nakamura M, Aminov RI (2001) Phylogenetic analysis of archaeal 16S rRNA libraries from the rumen suggests the existence of a novel group of archaea not associated with known methanogens. FEMS Microbiol Lett 200:67–72CrossRefPubMedGoogle Scholar
  91. Tanaka A, Prindiville TP, Gish R, Solnick JV, Coppel RL, Keeffe EB, Ansari A, Gershwin ME (1999) Are infectious agents involved in primary biliary cirrhosis? A PCR approach. J Hepatol 31:664–671CrossRefPubMedGoogle Scholar
  92. Tokura M, Ushida K, Miyazaki K, Kojima Y (1997) Methanogens associated with rumen ciliates. FEMS Microbiol Ecol 22:137–143Google Scholar
  93. Ushida K, Jouany JP (1996) Methane production associated with rumen-ciliated protozoa and its effect on protozoan activity. Lett Appl Microbiol 23:129–132PubMedGoogle Scholar
  94. Maarel MJ van der, Artz RR, Haanstra R, Forney LJ (1998) Association of marine archaea with the digestive tracts of two marine fish species. Appl Environ Microbiol 64:2894–2898PubMedGoogle Scholar
  95. Maarel MJ van der, Sprenger W, Haanstra R, Forney LJ (1999) Detection of methanogenic archaea in seawater particles and the digestive tract of a marine fish species. FEMS Microbiol Lett 173:189–194CrossRefPubMedGoogle Scholar
  96. Hoek AH van, Alen TA van, Sprakel VS, Leunissen JA, Brigge T, Vogels GD, Hackstein JH (2000) Multiple acquisition of methanogenic archaeal symbionts by anaerobic ciliates. Mol Biol Evol 17:251–258Google Scholar
  97. Wintzingerode F von, Göbel UB, Stackebrandt E (1997) Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. FEMS Microbiol Rev 21:213–229CrossRefPubMedGoogle Scholar
  98. Webster NS, Watts JE, Hill RT (2001) Detection and phylogenetic analysis of novel crenarchaeote and euryarchaeote 16S ribosomal RNA gene sequences from a Great Barrier Reef sponge. Mar Biotechnol 3:600–608CrossRefPubMedGoogle Scholar
  99. Whitehead TR, Cotta MA (1999) Phylogenetic diversity of methanogenic Archaea in swine waste storage pits. FEMS Microbiol Lett 179:223–226CrossRefPubMedGoogle Scholar
  100. Whitford MF, Teather RM, Forster RJ (2001) Phylogenetic analysis of methanogens from the bovine rumen. BMC Microbiol 1:5–9CrossRefPubMedGoogle Scholar
  101. Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms—proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci USA 87:4576–4579PubMedGoogle Scholar
  102. Wright ADG, Williams AJ, Winder B, Christophersen CT, Rodgers SL, Smith KD (2004) Molecular diversity of rumen methanogens from sheep in Western Australia. Appl Environ Microbiol 70:1263–1270CrossRefPubMedGoogle Scholar
  103. Yanagita K, Kamagata Y, Kawaharasaki M, Suzuki T, Nakamura Y, Minato H (2000) Phylogenetic analysis of methanogens in sheep rumen ecosystem and detection of Methanomicrobium mobile by fluorescence in situ hybridization. Biosci Biotechnol Biochem 64:1737–1742PubMedGoogle Scholar
  104. Zoetendal EG, Wright A von, Vilpponen-Salmela T, Ben Amor K, Akkermans AD, De Vos WM (2002) Mucosa-associated bacteria in the human gastrointestinal tract are uniformly distributed along the colon and differ from the community recovered from feces. Appl Environ Microbiol 68:3401–3407CrossRefPubMedGoogle Scholar
  105. Zurek L, Keddie BA (1998) Significance of methanogenic symbionts for development of the American cockroach, Periplaneta americana. J Insect Physiol 44:645–651CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Marianne Lange
    • 1
  • Peter Westermann
    • 1
  • Birgitte Kiær Ahring
    • 1
  1. 1.BioCentrumTechnical University of DenmarkLyngbyDenmark

Personalised recommendations