Applied Microbiology and Biotechnology

, Volume 66, Issue 6, pp 612–621 | Cite as

Inhibitors of virus replication: recent developments and prospects

  • Julia Magden
  • Leevi Kääriäinen
  • Tero AholaEmail author


The search for inhibitors of viral replication is dependent on understanding the events taking place at the molecular level during viral infection. All the essential steps during the viral life cycle are potential targets for antiviral drugs. Classical inhibitors of herpesvirus replication cause chain termination during viral DNA replication. Similarly, the HIV reverse transcriptase is the major target of anti-HIV compounds. The broad-spectrum antiviral agent ribavirin affects viral nucleic acid replication by multiple mechanisms. Another major enzyme encoded by many viruses is a protease responsible for the processing of virus-encoded polyproteins. The HIV protease has been very successfully targeted, and hepatitis C virus and rhinovirus protease inhibitors are being actively developed. The complex series of interactions during virus entry is a rapidly emerging and promising target for inhibitors of HIV and many other viruses. New anti-influenza drugs inhibit virus release from infected cells. Several stages of the viral life cycle remain incompletely characterized and are therefore poorly exploited in antiviral strategies. These include, among others, the RNA capping reactions catalyzed by many viruses, as well as the membrane association of replication complexes which is common to all positive-strand RNA viruses.


Human Immunodeficiency Virus Respiratory Syncytial Virus West Nile Virus Severe Acute Respiratory Syndrome Atazanavir 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank Dr. Ilkka Kilpeläinen for help in drawing the chemical formulas. We wish to acknowledge the financial support of the Academy of Finland (grant no. 201687), University of Helsinki Research Funds, the Sigrid Jusélius Foundation, and the European Union 5th Framework Programme


  1. Ahola T, Kääriäinen L (1995) Reaction in alphavirus mRNA capping: formation of a covalent complex of nonstructural protein nsP1 with 7-methyl-GMP. Proc Natl Acad Sci USA 92:507–511PubMedGoogle Scholar
  2. Aoki FY, MacLeod MD, Paggiaro P, Carewicz O, ElSawy A, Wat C, Griffiths M, Waalberg E, Ward P, on behalf of the IMPACT Study Group (2003) Early administration of oral oseltamivir increases the benefits of influenza treatment. J Antimicrob Chemother 51:123–129CrossRefPubMedGoogle Scholar
  3. Baker RO, Bray M, Huggins JW (2003) Potential antiviral therapeutics for smallpox, monkeypox and other orthopoxvirus infections. Antiviral Res 57:13–23CrossRefPubMedGoogle Scholar
  4. Barnard DL, Hubbard VD, Smee DF, Sidwell RW, Watson KG, Tucker SP, Reece PA (2004) In vitro activity of expanded-spectrum pyridazinyl oxime ethers related to pirodavir: novel capsid-binding inhibitors with potent antipicornavirus activity. Antimicrob Agents Chemother 48:1766–1772CrossRefPubMedGoogle Scholar
  5. Bray M, Driscoll J, Huggins JW (2000) Treatment of lethal Ebola virus infection in mice with a single dose of an S-adenosyl-L-homocysteine hydrolase inhibitor. Antiviral Res 45:135–147CrossRefPubMedGoogle Scholar
  6. Bryant PA, Tingay D, Dargaville PA, Starr M, Curtis N (2004) Neonatal coxsackie B virus infection - a treatable disease? Eur J Pediatr 163:223–228CrossRefPubMedGoogle Scholar
  7. Cianci C, Yu KL, Combrink K, Sin N, Pearce B, Wang A, Civiello R, Voss S, Luo G, Kadow K et al. (2004) Orally active fusion inhibitor of respiratory syncytial virus. Antimicrob Agents Chemother 48:413–422CrossRefPubMedGoogle Scholar
  8. Colonno R, Rose R, McLaren C, Thiry A, Parkin N, Friborg J (2004) Identification of I50L as the signature atazanavir (ATV)-resistance mutation in treatment-naive HIV-1-infected patients receiving ATV-containing regimens. J Infect Dis 189:1802–1810CrossRefPubMedGoogle Scholar
  9. Crance JM, Scaramozzino N, Jouan A, Garin D (2003) Interferon, ribavirin, 6-azauridine and glycyrrhizin: antiviral compounds active against pathogenic flaviviruses. Antiviral Res 58:73–79CrossRefPubMedGoogle Scholar
  10. Crotty S, Maag D, Arnold JJ, Zhong W, Lau JY, Hong Z, Andino R, Cameron CE (2000) The broad-spectrum antiviral ribonucleoside ribavirin is an RNA virus mutagen. Nat Med 6:1375–1379CrossRefPubMedGoogle Scholar
  11. Crump CE, Arruda E, Hayden FG (1994) Comparative antirhinoviral activities of soluble intercellular adhesion molecule-1 (sICAM-1) and chimeric ICAM-1/immunoglobulin A molecule. Antimicrob Agents Chemother 38:1425–1427PubMedGoogle Scholar
  12. De Clercq E (1998) Carbocyclic adenosine analogues as S-adenosylhomocysteine hydrolase inhibitors and antiviral agents: recent advances. Nucleosides Nucleotides 17:625–634PubMedGoogle Scholar
  13. De Clercq E (2004) Antiviral drugs in current clinical use. J Clin Virol 30:115–133CrossRefPubMedGoogle Scholar
  14. Douglas JL, Panis ML, Ho E, Lin K-Y, Krawczyk SH, Grant DM, Cai R, Swaminathan S, Cihlar T (2003) Inhibition of respiratory syncytial virus fusion by the small molecule VP-14637 via specific interactions with F protein. J Virol 77:5054–5064CrossRefPubMedGoogle Scholar
  15. Dragovich PS, Prins TJ, Zhou R, Webber SE, Marakovits JT, Fuhrman SA, Patick AK, Matthews DA, Lee CA, Ford CE et al (1999) Structure-based design, synthesis, and biological evaluation of irreversible human rhinovirus 3C protease inhibitors. 4. Incorporation of P1 lactam moieties as L-glutamine replacements. J Med Chem 42:1213–1224CrossRefPubMedGoogle Scholar
  16. Egloff MP, Benarroch D, Selisko B, Romette JL, Canard B (2002) An RNA cap (nucleoside-2′-O-)-methyltransferase in the flavivirus RNA polymerase NS5: crystal structure and functional characterization. EMBO J 21:2757–2768CrossRefPubMedGoogle Scholar
  17. Gould LH, Fikrig E (2004) West Nile virus: a growing concern? J Clin Invest 113:1102–1107CrossRefPubMedGoogle Scholar
  18. Gubareva LV (2004) Molecular mechanisms of influenza virus resistance to neuraminidase inhibitors. Virus Res 103:199–203CrossRefPubMedGoogle Scholar
  19. Gubareva LV, Kaiser L, Hayden FG (2000) Influenza virus neuraminidase inhibitors. Lancet 355:827–835CrossRefPubMedGoogle Scholar
  20. Hamdouchi C, Sanchez-Martinez C, Gruber J, Del Prado M, Lopez J, Rubio A, Heinz BA (2003) Imidazo[1,2-b]pyridazines, novel nucleus with potent and broad spectrum activity against human picornaviruses: design, synthesis, and biological evaluation. J Med Chem 46:4333–4341CrossRefPubMedGoogle Scholar
  21. Harrison SC, Alberts B, Ehrenfeld E, Enquist L, Fineberg H, McKnight SL, Moss B, O’Donnell M, Ploegh H, Schmid SL, Walter KP, Theriot J (2004) Discovery of antivirals against smallpox. Proc Natl Acad Sci USA 101:11178–11192CrossRefPubMedGoogle Scholar
  22. Hastings JC, Selnick H, Wolanski B, Tomassini JE (1996) Anti-influenza virus activities of 4-substituted 2,4-dioxobutanoic acid inhibitors. Antimicrob Agents Chemother 40:1304–1307PubMedGoogle Scholar
  23. Hayden FG, Andries K, Janssen PA (1992) Safety and efficacy of intranasal pirodavir (R77975) in experimental rhinovirus infection. Antimicrob Agents Chemother 36:727–732PubMedGoogle Scholar
  24. Hayden FG, Herrington DT, Coats TL, Kim K, Cooper EC, Villano SA, Liu S, Hudson S, Pevear DC, Collett M, McKinlay M, and the Pleconaril Respiratory Infection Study Group (2003a) Efficacy and safety of oral pleconaril for treatment of colds due to picornaviruses in adults: results of two double-blind, randomized, placebo-controlled trials. Clin Infect Dis 36:1523–1532CrossRefPubMedGoogle Scholar
  25. Hayden FG, Turner RB, Gwaltney JM, Chi-Burris K, Gersten M, Hsyu P, Patick AK, Smith GJ IIIrd, Zalman LS (2003b) Phase II, randomized, double-blind, placebo-controlled studies of ruprintrivir nasal spray 2-percent suspension for prevention and treatment of experimentally induced rhinovirus colds in healthy volunteers. Antimicrob Agents Chemother 47:3907–3916CrossRefPubMedGoogle Scholar
  26. Hayden FG, Belshe R, Villanueva C, Lanno R, Hughes C, Small I, Dutkowski R, Ward P, Carr J (2004) Management of influenza in households: a prospective, randomized comparison of oseltamivir treatment with and without postexposure prophylaxis. J Infect Dis 189:440–449CrossRefPubMedGoogle Scholar
  27. Hazuda DJ, Young SD, Guare JP, Anthony NJ, Gomez RP, Wai JS, Vacca JP, Handt L, Motzel SL, Klein HJ et al (2004) Integrase inhibitors and cellular immunity suppress retroviral replication in rhesus macaques. Science 305:528–532CrossRefPubMedGoogle Scholar
  28. Heinz BA, Vance LM (1995) The antiviral compound enviroxime targets the 3A coding region of rhinovirus and poliovirus. J Virol 69:4189–4197PubMedGoogle Scholar
  29. Heinz BA, Vance LM (1996) Sequence determinants of 3A-mediated resistance to enviroxime in rhinoviruses and enteroviruses. J Virol 70:4854–4857PubMedGoogle Scholar
  30. Hogle JM, Chow M, Filman DJ (1985) Three-dimensional structure of poliovirus at 2.9 A resolution. Science 229:1358–1365PubMedGoogle Scholar
  31. Huggins JW, Hsiang CM, Cosgriff TM, Guang MY, Smith JI, Wu ZO, LeDuc JW, Zheng ZM, Meegan JM, Wang QN et al (1991) Prospective, double-blind, concurrent, placebo-controlled clinical trial of intravenous ribavirin therapy of hemorrhagic fever with renal syndrome. J Infect Dis 164:1119–1127PubMedGoogle Scholar
  32. Itzstein M von, Wu WY, Kok GB, Pegg MS, Dyason JC, Jin B, Van Phan T, Smythe ML, White HF, Oliver SW et al (1993) Rational design of potent sialidase-based inhibitors of influenza virus replication. Nature 363:418–423CrossRefPubMedGoogle Scholar
  33. Kääriäinen L, Ahola T (2002) Functions of alphavirus nonstructural proteins in RNA replication. Prog Nucleic Acid Res Mol Biol 71:187–222PubMedGoogle Scholar
  34. Kim CU, Lew W, Williams MA, Liu H, Zhang L, Swaminathan S, Bischofberger N, Chen MS, Mendel DB, Tai CY, Laver WG, Stevens RC (1997) Influenza neuraminidase inhibitors possessing a novel hydrophobic interaction in the enzyme active site: design, synthesis, and structural analysis of carbocyclic sialic acid analogues with potent anti-influenza activity. J Am Chem Soc 119:681–690CrossRefGoogle Scholar
  35. Lamarre D, Anderson PC, Bailey M, Beaulieu P, Bolger G, Bonneau P, Bos M, Cameron DR, Cartier M, Cordingley MG et al (2003) An NS3 protease inhibitor with antiviral effects in humans infected with hepatitis C virus. Nature 426:186–189CrossRefPubMedGoogle Scholar
  36. Lampio A, Ahola T, Darzynkiewicz E, Stepinski J, Jankowska-Anyszka M, Kääriäinen L (1999) Guanosine nucleotide analogs as inhibitors of alphavirus mRNA capping enzyme. Antiviral Res 42:35–46CrossRefPubMedGoogle Scholar
  37. Lampio A, Kilpeläinen I, Pesonen S, Karhi K, Auvinen P, Somerharju P, Kääriäinen L (2000) Membrane binding mechanism of an RNA virus-capping enzyme. J Biol Chem 275:37853–37859CrossRefPubMedGoogle Scholar
  38. Larder BA, Hertogs K, Bloor S, van den Eynde CH, DeCian W, Wang Y, Freimuth WW, Tarpley G (2000) Tipranavir inhibits broadly protease inhibitor-resistant HIV-1 clinical samples. AIDS 14:1943–1948CrossRefPubMedGoogle Scholar
  39. Lin C, Lin K, Luong YP, Rao BG, Wei YY, Brennan DL, Fulghum JR, Hsiao HM, Ma S, Maxwell JP, Cottrell KM, Perni RB, Gates CA, Kwong AD (2004) In vitro resistance studies of hepatitis C virus serine protease inhibitors, VX-950 and BILN 2061: structural analysis indicates different resistance mechanisms. J Biol Chem 279:17508–17514CrossRefPubMedGoogle Scholar
  40. Lohmann V, Korner F, Koch J, Herian U, Theilmann L, Bartenschlager R (1999) Replication of subgenomic hepatitis C virus RNAs in a hepatoma cell line. Science 285:110–113CrossRefPubMedGoogle Scholar
  41. Magden J, Takeda N, Li T, Auvinen P, Ahola T, Miyamura T, Merits A, Kääriäinen L (2001) Virus-specific mRNA capping enzyme encoded by hepatitis E virus. J Virol 75:6249–6255CrossRefPubMedGoogle Scholar
  42. Mairuhu ATA, Wagenaar J, Brandjes DPM, van Gorp ECM (2004) Dengue: an arthropod-borne disease of global importance. Eur J Clin Microbiol Infect Dis 23:425–433PubMedGoogle Scholar
  43. Matthews DA, Smith WW, Ferre RA, Condon B, Budahazi G, Sisson W, Villafranca JE, Janson CA, McElroy HE, Gribskov CL (1994) Structure of human rhinovirus 3C protease reveals a trypsin-like polypeptide fold, RNA-binding site, and means for cleaving precursor polyprotein. Cell 77:761–771CrossRefPubMedGoogle Scholar
  44. Matthews T, Salgo M, Greenberg M, Chung J, DeMasi R, Bolognesi D (2004) Enfuvirtide: the first therapy to inhibit the entry of HIV-1 into host CD4 lymphocytes. Nat Rev Drug Discov 3:215–225CrossRefPubMedGoogle Scholar
  45. McKinlay MA, Pevear DC, Rossmann MG (1992) Treatment of the picornavirus common cold by inhibitors of viral uncoating and attachment. Annu Rev Microbiol 46:635–654PubMedGoogle Scholar
  46. Moore JP, Doms RW (2003) The entry of entry inhibitors: a fusion of science and medicine. Proc Natl Acad Sci USA 100:10598–10602CrossRefPubMedGoogle Scholar
  47. Moradpour D, Brass V, Gosert R, Wolk B, Blum HE (2002) Hepatitis C: molecular virology and antiviral targets. Trends Mol Med 8:476–482CrossRefPubMedGoogle Scholar
  48. Murthy HM, Judge K, DeLucas L, Padmanabhan R (2000) Crystal structure of Dengue virus NS3 protease in complex with a Bowman-Birk inhibitor: implications for flaviviral polyprotein processing and drug design. J Mol Biol 301:759–767CrossRefPubMedGoogle Scholar
  49. Neyts J, De Clercq E (2003) Therapy and short-term prophylaxis of poxvirus infections: historical background and perspectives. Antiviral Res 57:25–33CrossRefPubMedGoogle Scholar
  50. Ohlin A, Hoover-Litty H, Sanderson G, Paessens A, Johnston SL, Holgate ST, Huguenel E, Greve JM (1994) Spectrum of activity of soluble intercellular adhesion molecule-1 against rhinovirus reference strains and field isolates. Antimicrob Agents Chemother 38:1413–1415PubMedGoogle Scholar
  51. Parkes KEB, Ermert P, Fässler J, Ives J, Martin JA, Merrett JH, Obrecht D, Williams G, Klumpp K (2003) Use of a pharmacophore model to discover a new class of influenza endonuclease inhibitors. J Med Chem 46:1153–1164CrossRefPubMedGoogle Scholar
  52. Plemper RK, Erlandson KJ, Lakdawala AS, Sun A, Prussia A, Boonsombat J, Aki-Sener E, Yalcin I, Yildiz I, Temiz-Arpaci O, Tekiner B, Liotta DC, Snyder JP, Compans RW (2004) A target site for template-based design of measles virus entry inhibitors. Proc Natl Acad Sci USA 101:5628–5633CrossRefPubMedGoogle Scholar
  53. Plosker GL, Figgitt DP (2003) Tipranavir. Drugs 63:1611–1618PubMedGoogle Scholar
  54. Pomerantz RJ, Horn DL (2003) Twenty years of therapy for HIV-1 infection. Nat Med 9:867–873CrossRefPubMedGoogle Scholar
  55. Rossmann MG, Arnold E, Erickson JW, Frankenberger EA, Griffith JP, Hecht HJ, Johnson JE, Kamer G, Luo M, Mosser AG, Rueckert RR, Sherry B, Vriend G (1985) Structure of a human common cold virus and functional relationship to other picornaviruses. Nature 317:145–153CrossRefPubMedGoogle Scholar
  56. Saladino R, Ciambecchini U, Nencioni L, Palamara AT (2003) Recent advances in the chemistry of parainfluenza-1 (Sendai) virus inhibitors. Med Res Rev 23:427–455CrossRefPubMedGoogle Scholar
  57. Salonen A, Ahola T, Kääriäinen L (2004) Viral RNA replication in association with cellular membranes. Curr Top Microbiol Immunol 285:139–173Google Scholar
  58. Sanne I, Piliero P, Squires K, Thiry A, Schnittman S, AI424-007 Clinical Trial Group (2003) Results of a phase 2 clinical trial at 48 weeks (AI424-007): a dose-ranging, safety, and efficacy comparative trial of atazanavir at three doses in combination with didanosine and stavudine in antiretroviral-naive subjects. J Acquir Immune Defic Syndr 32:18–29PubMedGoogle Scholar
  59. Severson WE, Schmaljohn CS, Javadian A, Jonsson CB (2003) Ribavirin causes error catastrophe during Hantaan virus replication. J Virol 77:481–488CrossRefPubMedGoogle Scholar
  60. Snijder EJ, Bredenbeek PJ, Dobbe JC, Thiel V, Ziebuhr J, Poon LL, Guan Y, Rozanov M, Spaan WJ, Gorbalenya AE (2003) Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage. J Mol Biol 331:991–1004CrossRefPubMedGoogle Scholar
  61. Strauss JH, Strauss EG (2002) Viruses and human disease. Academic, San DiegoGoogle Scholar
  62. Strizki JM, Xu S, Wagner NE, Wojcik L, Liu J, Hou Y, Endres M, Palani A, Shapiro S, Clader JW et al (2001) SCH-C (SCH 351125), an orally bioavailable, small molecule antagonist of the chemokine receptor CCR5, is a potent inhibitor of HIV-1 infection in vitro and in vivo. Proc Natl Acad Sci USA 98:12718–12723CrossRefPubMedGoogle Scholar
  63. Sung JJY, Wu A, Joynt GM, Yuen KY, Lee N, Chan PKS, Cockram CS, Ahuja AT, Yu LM, Wong VW, Hui DSC (2004) Severe acute respiratory syndrome: report of treatment and outcome after a major outbreak. Thorax 59:414–420CrossRefPubMedGoogle Scholar
  64. Tan SL, Pause A, Shi Y, Sonenberg N (2002) Hepatitis C therapeutics: current status and emerging strategies. Nat Rev Drug Discov 1:867–881CrossRefPubMedGoogle Scholar
  65. Turner RB (2001) The treatment of rhinovirus infections: progress and potential. Antiviral Res 49:1–14Google Scholar
  66. Wade RC (1997) ‘Flu’ and structure-based drug design. Structure 5:1139–1145CrossRefPubMedGoogle Scholar
  67. Wu C, Jan J, Ma S, Kuo C, Juan H, Cheng YE, Hsu H, Huang H, Wu D, Brik A, et al (2004) Small molecules targeting severe acute respiratory syndrome coronavirus. Proc Natl Acad Sci USA 101:10012–10017CrossRefPubMedGoogle Scholar
  68. Zhou S, Liu R, Baroudy BM, Malcolm BA, Reyes GR (2003) The effect of ribavirin and IMPDH inhibitors on hepatitis C virus subgenomic replicon RNA. Virology 310:333–342PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  1. 1.Institute of BiotechnologyUniversity of HelsinkiFinland

Personalised recommendations