Applied Microbiology and Biotechnology

, Volume 66, Issue 5, pp 475–485

Cyclodextrin glucanotransferase: from gene to applications

Mini-Review

Abstract

Cyclodextrin glucanotransferase (CGTase) is an important industrial enzyme which is used to produce cyclodextrins. CGTase genes from more than 30 bacteria have been isolated and several of the enzymes have been identified and biochemically characterized. For a better understanding of the reaction mechanism and function of CGTase, the enzyme has been analyzed at gene level and protein level with regard to its structure and the similarity of different CGTase subgroups. The biological role of the enzyme is proposed based on the genetic and enzymatic analyses. Methods to enhance the production of active CGTase by bacteria are compared. The enzyme can be applied in biotechnology for the production of cyclodextrins and oligosaccharides with novel properties.

References

  1. Akhmetzjanov A, et al (1992) Protein database accession P31747. NCBI, Washington, D.C.Google Scholar
  2. Alcalde M, Plou FJ, Pastor E, Ballesteros A (1998) Effect of chemical modification of cyclodextrin glycosyltransferase (CGTase) from Thermoanaerobacter sp. on its activity and product selectivity. Ann NY Acad Sci 864:183–187PubMedGoogle Scholar
  3. Alcalde M, Plou FJ, Teresa M, Valdes I, Mendez E, Ballesteros A (2001) Succinylation of cyclodextrin glycosyltransferase from Thermoanaerobacter sp. 501 enhances its transferase activity using starch as donor. J Biotechnol 86:71–80CrossRefPubMedGoogle Scholar
  4. Binder F, Huber O, Bock A (1986) Cyclodextrin-glycosyltransferase from Klebsiella pneumoniae M5a1: cloning, nucleotide sequence and expression. Gene 47:269–277CrossRefPubMedGoogle Scholar
  5. Biwer A, Antranikian G, Heinzle E (2002) Enzymatic production of cyclodextrins. Appl Microbiol Biotechnol 59:609–617CrossRefPubMedGoogle Scholar
  6. Blackwood A, Bucke C (2000) Addition of polar organic solvents can improve the product selectivity of cyclodextrin glycosyltransferase-solvent effects on CGTase. Enzyme Microbiol Technol 27:704–708CrossRefGoogle Scholar
  7. Choi J, Lee J, Cjoi K (1996) Klebsiella oxytoca No 19-1 capable for producing α-cyclodextrin. US patent 5492829Google Scholar
  8. Cramer F (1952) Occlusion compounds of cyclodextrin. Angew Chem Int Ed 64:136Google Scholar
  9. Craynest M, Jorgensen S, Sarvas M, Kontinen VP (2003) Enhanced secretion of heterologous cyclodextrin glycosyltransferase by a mutant of Bacillus licheniformis defective in the d-alanylation of teichoic acids. Lett Appl Microbiol 37:75–80CrossRefPubMedGoogle Scholar
  10. Davies GJ, Wilson KS, Henrissat B (1997) Nomenclature for sugar-binding subsites in glycosyl hydrolases. Biochem J 321:557–559PubMedGoogle Scholar
  11. Endo T, Zheng M, Zimmermann W (2002) Enzymatic synthesis and analysis of large-ring cyclodextrins. Aust J Chem 55:39–48CrossRefGoogle Scholar
  12. Englbrecht A, Harrer G, Lebert M (1988) Biochemical and genetic characterization of a CGTase from an alkalophilic bacterium forming primarily γ-cyclodextrin. In: Huber O, Szejtli (eds) Proceedings of the fourth international symposium on cyclodextrins. Kluwer, Dordrecht, pp 87–92Google Scholar
  13. Ferretti JJ, McShan WM, Ajdic D, Savic DJ, Savic G, Lyon K, Primeaux C, Sezate S, Suvorov AN, Kenton S, Lai HS, Lin SP, Qian Y, Jia HG, Najar FZ, Ren Q, Zhu H, Song L, White J, Yuan X, Clifton SW, Roe BA, McLaughlin R (2001) Complete genome sequence of an M1 strain of Streptococcus pyogenes. Proc Natl Acad Sci USA 98:4658–4663CrossRefPubMedGoogle Scholar
  14. Fiedler G, Pajatsch M, Böck A (1996) Genetics of a novel starch utilisation pathway present in Klebisiella oxytoca. J Mol Biol 256:279–291CrossRefPubMedGoogle Scholar
  15. Fujiwara S, Kakihara H, Woo KB, Imanaka T (1992) Cyclization characteristics of cyclodextrin glucanotransferase are conferred by the NH2-terminal region of the enzyme. Appl Environ Microbiol 58:4016–4025PubMedGoogle Scholar
  16. Gawande BN, Patkar AY (1999) Application of factorial designs for optimization of cyclodextrin glycosyltransferase production from Klebsiella pneumoniae AS-22. Biotechnol Bioeng 64:168–173CrossRefPubMedGoogle Scholar
  17. Gawande BN, Patkar AY (2001) α-Cyclodextrin production using cyclodextrin glycosyltransferase from Klebsiella pneumoniae AS-22. Starch 53:75–83CrossRefGoogle Scholar
  18. Hamamoto T, Kaneko T, Horikoshi K (1987) Nucleotide sequence of the cyclomaltodextrin glucanotransferase (CGTase) gene from alkalophilic Bacillus sp. strain no. 38-2. Agric Biol Chem 51:2019–2022Google Scholar
  19. Hashimoto Y, Yamamoto T, Fujiwara S, Takagi M, Imanaka T (2001) Extracellular synthesis, specific recognition, and intracellular degradation of cyclomaltodextrins by the hyperthermophilic archaeon Thermococcus sp. strain B1001. J Bacteriol 183:5050–5057CrossRefPubMedGoogle Scholar
  20. Hill DE, Aldape R, Rozzell JD (1990) Nucleotide sequence of a cyclodextrin glucosyltransferase gene, cgtA, from Bacillus licheniformis. Nucleic Acids Res 18:199–200PubMedGoogle Scholar
  21. Hofmann BE, Bender H, Schulz GE (1989) Three-dimensional structure of cyclodextrin glycosyltransferase from Bacillus circulans at 3.4 A resolution. J Mol Biol 209:793–800CrossRefPubMedGoogle Scholar
  22. Itkor P, Tsukagoshi N, Udaka S (1990) Nucleotide sequence of the raw-starch-digesting amylase gene from Bacillus sp. B1018 and its strong homology to the cyclodextrin glucanotransferase genes. Biochem Biophys Res Commun 166:630–636CrossRefPubMedGoogle Scholar
  23. Jamuna R, Saswathi N, Sheela R, Ramakrishna SV (1993) Synthesis of cyclodextrin glucosyl transferase by Bacillus cereus for the production of cyclodextrins. Appl Biochem Biotechnol 43:163–176PubMedGoogle Scholar
  24. Janecek S (1994) Parallel beta/alpha-barrels of alpha-amylase, cyclodextrin glycosyltransferase and oligo-1,6-glucosidase versus the barrel of beta-amylase: Evolutionary distance is a reflection of unrelated sequences. FEBS Lett 353:119–123CrossRefPubMedGoogle Scholar
  25. Janecek S (1995) Close evolutionary relatedness among functionally distantly related members of the (alpha/beta)8-barrel glycosyl hydrolases suggested by the similarity of their fifth conserved sequence region. FEBS Lett 377:6–8CrossRefPubMedGoogle Scholar
  26. Joergensen ST, Tangney M, Starnes RL, Amemiya K, Jorgensen PL (1997) Cloning and nucleotide sequence of a thermostable cyclodextrin glycosyltransferase gene from Thermoanaerobacter sp. ATCC 53627 and its expression in Escherichia coli. Biotechnol Lett 19:1027–1031CrossRefGoogle Scholar
  27. Jorgensen PL, Fulgsang C (2002) Patent: WO 0206508-AGoogle Scholar
  28. Kaneko T, Song K, Hamamoto T, Kudo T, Horikoshi K (1989) Construction of a chimeric series of Bacillus cyclodextrin glucanotransferases and analysis of the thermal stability and pH optima of the enzymes. J Gen Microbiol 135:3447–3457PubMedGoogle Scholar
  29. Kato T, Orikoshi K (1984) Colorimetric determination of γ-cylodextrin. Anal Biochem 56:1739–1740Google Scholar
  30. Kaulpiboon J, Pongsawasdi P (2003) Identification of essential histidines in cyclodextrin glycosyltransferase isoform 1 from Paenibacillus sp. A11. J Biochem Mol Biol 36:409–416PubMedGoogle Scholar
  31. Kim MH, Sohn CB, Oh TK (1998) Cloning and sequencing of a cyclodextrin glycosyltransferase gene from Brevibacillus brevis CD162 and its expression in Escherichia coli. FEMS Microbiol Lett 164:411–418CrossRefPubMedGoogle Scholar
  32. Kim MJ, Park WS, Lee HS, Kim TJ, Shin JH, Yoo SH, Cheong TK, Ryu S, Kim JC, Kim JW, Moon TW, Robyt JF, Park KH (2000) Kinetics and inhibition of cyclomaltodextrinase from alkalophilic Bacillus sp. I-5. Arch Biochem Biophys 373:110–115CrossRefPubMedGoogle Scholar
  33. Kim YH, Bae KH, Kim TJ, Park KH, Lee HS, Byun SM (1997) Effect on product specificity of cyclodextrin glycosyltransferase by site-directed mutagenesis. Biochem Mol Biol Int 41:227–234PubMedGoogle Scholar
  34. Kimura K, Kataoka S, Ishii Y, Takano T, Yamane K (1987) Nucleotide sequence of the beta-cyclodextrin glucanotransferase gene of alkalophilic Bacillus sp. strain 1011 and similarity of its amino acid sequence to those of alpha-amylases. J Bacteriol 169:4399–4402PubMedGoogle Scholar
  35. Kimura K, Ishii Y, Kataoka S, Takano T, Yamane K (1990) Expression of the beta-cyclodextrin glucanotransferase gene of an alkalophilic Bacillus sp. #1011 in Escherichia coli cells and characterization of the synthesized enzyme. Agric Biol Chem 54:641–648PubMedGoogle Scholar
  36. Kitahata S (1995) Catalytic reaction mechanism of amylases and related enzymes. In: Amylase Research Society of Japan (eds) Enzyme chemistry and molecular biology of amylase and related enzymes. CRC, Boca Raton, pp 6–17Google Scholar
  37. Kitamoto N, Kimura T, Kito Y, Ohmiya K (1992) Cloning and sequencing of the gene encoding cyclodextrin glucanotransferase from Bacillus sp. KC201. J Ferment Bioeng 74:345–351Google Scholar
  38. Klein C, Hollender J, Bender H, Schulz GE (1992) Catalytic center of cyclodextrin glycosyltransferase derived from X-ray structure analysis combined with site-directed mutagenesis. Biochemistry 31:8740–8746PubMedGoogle Scholar
  39. Klein C, Schulz GE (1991) Structure of cyclodextrin glycosyltransferase refined at 2.0 A resolution. J Mol Biol 217:737–750PubMedGoogle Scholar
  40. Knegtel RM, Strokopytov B, Penninga D, Faber OG, Rozeboom HJ, Kalk KH, Dijkhuizen L, Dijkstra BW (1995) Crystallographic studies of the interaction of cyclodextrin glycosyltransferase from Bacillus circulans strain 251 with natural substrates and products. J Biol Chem 270:29256–29264CrossRefPubMedGoogle Scholar
  41. Knegtel RM, Wind RD, Rozeboom HJ, Kalk KH, Buitelaar RM, Dijkhuizen L, Dijkstra BW (1996) Crystal structure at 2.3 A resolution and revised nucleotide sequence of the thermostable cyclodextrin glycosyltransferase from Thermonanaerobacterium thermosulfurigenes EM1. J Mol Biol 256:611–622CrossRefPubMedGoogle Scholar
  42. Kobayashi S (1996) Cyclodextrin producing enzyme (CGTase). In: Park K, Robyt J, Choi Y (eds) Enzymes for carbohydrate engineering. Elsevier, Amsterdam, pp 23–41Google Scholar
  43. Kometani T, Terada Y, Nishimura T, Nakae T, Takii H, Okada S (1994) Transglycosylation to hesperidin by cyclodextrin glucnotransferase from an alkalophilic Bacillus species in alkaline pH and properties of hesperidin glycosides. Biosci Biotechnol Biochem 58:1990–1994Google Scholar
  44. Kometani T, Nishimura T, Nakae T, Takii H, Okada S (1996) Synthesis of neohesperidin glycosides and naringin glycosides by cyclodextrin glucanotransferase from an alkalophilic Bacillus species. Biosci Biotechnol Biochem 60:645–649PubMedGoogle Scholar
  45. Koshland DE (1953) Stereochemistry and the mechanism of enzyme reactions. Biol Rev 28:416–436Google Scholar
  46. Landert JP, Flasschel E, Renken A (1981) A photometric test for the cycling activity of cyclodextrin glycosyltransferases. In: Szjtli J (ed) Proceedings of the first international symposium on cyclodextrins. Akademiai Kiado, Budapest, pp 89–94Google Scholar
  47. Larsen K, Christensen HJ, Mathiesen F, Pedersen LH, Zimmermann W (1998) Production of cyclomaltononaose (delta-cyclodextrin) by cyclodextrin glycosyltransferases from Bacillus spp and bacterial isolates. Appl Microbiol Biotechnol 50:314–317CrossRefPubMedGoogle Scholar
  48. Lawson CL, Montfort R van, Strokopytov B, Rozeboom HJ, Kalk KH, Vries GE de, Penninga D, Dijkhuizen L, Dijkstra BW (1994) Nucleotide sequence and X-ray structure of cyclodextrin glycosyltransferase from Bacillus circulans strain 251 in a maltose-dependent crystal form. J Mol Biol 236:590–600CrossRefPubMedGoogle Scholar
  49. Lee SH, Kim YW, Lee S, Auh JH, Yoo SS, Kim TJ, Kim JW, Kim ST, Rho HJ, Choi JH, Kim YB, Park KH (2002) Modulation of cyclizing activity and thermostability of cyclodextrin glucanotransferase and its application as an antistaling enzyme. J Agric Food Chem 50:1411–1415CrossRefPubMedGoogle Scholar
  50. Lee Y, Baek S, Shin HD (1993) Transglycosylation reaction of cyclodextrin glucanotransferase in the attrition coupled reaction system using raw starch as a donor. Korean J Appl Microbiol Biotechnol 21:461–467Google Scholar
  51. Leemhuis H, Dijkstra BW, Dijkhuizen L (2002) Mutations converting cyclodextrin glycosyltransferase from a transglycosylase into a starch hydrolase. FEBS Lett 514:189–192CrossRefPubMedGoogle Scholar
  52. Leemhuis H, Kragh KM, Dijkstra BW, Dijkhuizen L (2003a) Engineering cyclodextrin glycosyltransferase into a starch hydrolase with a high exo-specificity. J Biotechnol 103:203–212CrossRefPubMedGoogle Scholar
  53. Leemhuis H, Rozeboom HJ, Wilbrink M, Euverink GJ, Dijkstra BW, Dijkhuizen L (2003b) Conversion of cyclodextrin glycosyltransferase into a starch hydrolase by directed evolution: The role of alanine 230 in acceptor subsite +1. Biochemistry 42:7518–7526CrossRefPubMedGoogle Scholar
  54. Lima HO, De Moraes FF, Zanin GM (1998) Beta-cyclodextrin production by simultaneous fermentation and cyclization. Appl Biochem Biotechnol 70–72:789–804Google Scholar
  55. Maarel MJ van der, Veen B van der, Uitdehaag JC, Leemhuis H, Dijkhuizen L (2002) Properties and applications of starch-converting enzymes of the alpha-amylase family. J Biotechnol 94:137–155CrossRefPubMedGoogle Scholar
  56. Martins RF, Delgado O, Hatti-Kaul R (2003) Sequence analysis of cyclodextrin glycosyltransferase from the alkalophilic Bacillus agarahaerens. Biotechnol Lett 25:1555–1562CrossRefPubMedGoogle Scholar
  57. Mattsson P, Pohjalainen T, Korpela T (1992) Chemical modification of cyclomaltodextrin glucanotransferase from Bacillus circulans var. alkalophilus. Biochim Biophys Acta 1122:33–40PubMedGoogle Scholar
  58. Maurer KH, Breves R, Polanyi L (2002) Patent WO 0244350-AGoogle Scholar
  59. McCarter JD, Withers SG (1994) Mechanisms of enzymatic glycoside hydrolysis. Curr Opin Struct Biol 4:885–892PubMedGoogle Scholar
  60. McCarter JD, Withers SG (1996) Unequivocal identification of Asp-214 as the catalytic nucleophile of Saccharomyces cerevisiae alpha-glucosidase using 5-fluoroglycosyl fluorides. J Biol Chem 271:6889–6894CrossRefPubMedGoogle Scholar
  61. Nakajima R, Imanaka T, Aiba S (1986) Comparison of amino acid sequences of eleven different α-amylases. Appl Microbiol Biotechnol 23:355–360CrossRefGoogle Scholar
  62. Nakamura A, Haga K, Yamane K (1993) Three histidine residues in the active center of cyclodextrin glucanotransferase from alkalophilic Bacillus sp. 1011: Effects of the replacement on pH dependence and transition-state stabilization. Biochemistry 32:6624–6631PubMedGoogle Scholar
  63. Nakamura A, Haga K, Yamane K (1994) The transglycosylation reaction of cyclodextrin glucanotransferase is operated by a ping-pong mechanism. FEBS Lett 337:66–70CrossRefPubMedGoogle Scholar
  64. Nakano Y, Kuramitsu H (1992) Mechanism of Streptococcus mutant glucosyltransferases: hybrid–enzyme analysis. J Bacteriol 174:5639–5646PubMedGoogle Scholar
  65. Nishida T, Nakamura A, Masaki H, Uozumi T (1997) Regulation of cyclodextrin glucanotransferase synthesis in Bacillus ohbensis. FEMS Microbiol Lett 149:221–226CrossRefPubMedGoogle Scholar
  66. Nishida T, Nakamura A, Masaki H, Uozumi T (1999) Transcriptional regulation of the Bacillus ohbensis cyclodextrin glucanotransferase gene in B. subtilis. Biosci Biotechnol Biochem 63:1902–1909PubMedGoogle Scholar
  67. Nitschke L, Heeger K, Bender H, Schulz GE (1990) Molecular cloning, nucleotide sequence and expression in Escherichia coli of the beta-cyclodextrin glycosyltransferase gene from Bacillus circulans strain no. 8. Appl Microbiol Biotechnol 33:542–546CrossRefPubMedGoogle Scholar
  68. Ohdan K, Kuriki T, Takata H, Okada S, Okada S (2000) Cloning of the cyclodextrin glucanotransferase gene from alkalophilic Bacillus sp. A2-5a and analysis of the raw starch-binding domain. Appl Microbiol Biotechnol 53:430–434CrossRefPubMedGoogle Scholar
  69. Pajatsch M, Gerhart M, Peist R, Horlacher R, Boos W, Bock A (1998) The periplasmic cyclodextrin binding protein CymE from Klebsiella oxytoca and its role in maltodextrin and cyclodextrin transport. J Bacteriol 180:2630–2635PubMedGoogle Scholar
  70. Paloheimo M, Haglund D, Aho S, Korhola M (1992) Production of cyclomaltodextrin glucanotransferase of Bacillus circulans var. alkalophilus ATCC21783 in B. subtilis. Appl Microbiol Biotechnol 36:584–591CrossRefPubMedGoogle Scholar
  71. Park KH, Kim MJ, Lee HS, Han NS, Kim D, Robyt JF (1998) Transglycosylation reactions of Bacillus stearothermophilus maltogenic amylase with acarbose and various acceptors. Carbohydr Res 313:235–246CrossRefPubMedGoogle Scholar
  72. Parsiegla G, Schmidt AK, Schulz GE (1998) Substrate binding to a cyclodextrin glycosyltransferase and mutations increasing the gamma-cyclodextrin production. Eur J Biochem 255:710–717CrossRefPubMedGoogle Scholar
  73. Penninga D, Strokopytov B, Rozeboom HJ, Lawson CL, Dijkstra BW, Bergsma J, Dijkhuizen L (1995) Site-directed mutations in tyrosine 195 of cyclodextrin glycosyltransferase from Bacillus circulans strain 251 affect activity and product specificity. Biochemistry 34:3368–3376PubMedGoogle Scholar
  74. Penninga D, Veen BA van der, Knegtel RM, Rozeboom HJ, Kalk KH, Dijkhuizen L, Dijkstra BW (1996) The raw starch binding domain of cyclodextrin glycosyltransferase from Bacillus circulans strain 251. J Biol Chem 271:32777–32784CrossRefPubMedGoogle Scholar
  75. Qi Q, She X, Endo T, Zimmermann W (2004) Effect of the reaction temperature on the cyclization and coupling reaction of the cyclodextrin glucanotransferase from Bacillus macerans for the synthesis of large ring cyclodextrin. Tetrahedron 60:799–806CrossRefGoogle Scholar
  76. Rashid N, Cornista J, Ezaki S, Fukui T, Atomi H, Imanaka T (2002) Characterization of an archaeal cyclodextrin glucanotransferase with a novel C-terminal domain. J Bacteriol 184:777–784PubMedGoogle Scholar
  77. Rendleman JA (1997) Enhancement of cyclodextrin production through use of debranching enzymes. Biotechnol Appl Biochem 26:51–61PubMedGoogle Scholar
  78. Rimphanitchayakit V, TonozukaT, Sakano Y (2000) Protein database accession AAG31622. NCBI, Washington, D.C.Google Scholar
  79. Rosso AM, Ferrarotti SA, Krymkiewicz N, Nudel BC (2002) Optimisation of batch culture conditions for cyclodextrin glucanotransferase production from Bacillus circulans DF 9R. Microb Cell Fact 1:3–9CrossRefPubMedGoogle Scholar
  80. Saiton N, Nei M (1987) The neighbour joining method: anew method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  81. Sato M, Matsuo T, Orita N, Yagi Y (1991) Synthesis of novel sugars, oligosyl-inositols, and their growth stimulation effect for Bifidobacterium. Biotechnol Lett 13:69–74Google Scholar
  82. Schmid G (1996) Preparation and industrial production of cyclodextrins. In: Atwood J, Davies ED, MacNicol DD, et al (eds) Comprehesive supermolecular chemistry. Kluwer, Dordrecht, pp 41–56Google Scholar
  83. Schmid G, Englbrecht A, Schmid D (1988) Cloning and nucleotide sequence of a cyclodextrin glycosyltransferase gene from the alkalophilic Bacillus sp.1-1. In: Huber O, Szejtli (eds) Proceedings of the fourth international symposium on cyclodextrins. Kluwer, Dordrecht, pp 77–81Google Scholar
  84. Schmidt AK, Cottaz S, Driguez H, Schulz GE (1998) Structure of cyclodextrin glycosyltransferase complexed with a derivative of its main product beta-cyclodextrin. Biochemistry 37:5909–5915CrossRefPubMedGoogle Scholar
  85. Shibuya T, Miwa Y, Nakano M, Yamauchi T, Chaen H, Sakai S, Kurimoto M (1993) Enzymatic synthesis of a novel trisaccharide, glucosyl lactoside. Biosci Biotechnol Biochem 57:56–60PubMedGoogle Scholar
  86. Silva AC da, Ferro JA, Reinach FC, Farah CS, Furlan LR, Quaggio RB, Monteiro-Vitorello CB, Sluys MA van, Almeida NF, Alves LM, Amaral AM do, Bertolini MC, Camargo LE, Camarotte G, Cannavan F, Cardozo J, Chambergo F, Ciapina LP, Cicarelli RM, Coutinho LL, Cursino-Santos JR, El-Dorry H, Faria JB, Ferreira AJ, Ferreira RC, Ferro MI, Formighieri EF, Franco MC, Greggio CC, Gruber A, Katsuyama AM, Kishi LT, Leite RP, Lemos EG, Lemos MV, Locali EC, Machado MA, Madeira AM, Martinez-Rossi NM, Martins EC, Meidanis J, Menck CF, Miyaki CY, Moon DH, Moreira LM, Novo MT, Okura VK, Oliveira MC, Oliveira VR, Pereira HA, Rossi A, Sena JA, Silva C, Souza RF de, Spinola LA, Takita MA, Tamura RE, Teixeira EC, Tezza RI, Trindade dos Santos M, Truffi D, Tsai SM, White FF, Setubal JC, Kitajima JP (2002) Comparison of the genomes of two Xanthomonas pathogens with differing host specificities. Nature 417:459–463CrossRefPubMedGoogle Scholar
  87. Sin K, Nakamura A, Kobayashi K, Matsuura Y, Uozumi T (1991) Cloning and sequencing of a cyclodextrin glucanotransferase gene from Bacillus ohbensis and its expression in Escherichia coli. Appl Microbiol Biotechnol 35:600–605CrossRefPubMedGoogle Scholar
  88. Sin KA, Nakamura A, Masaki H, Masaki H, Uozumi T (1994) Replacement of an amino acid residue of cyclodextrin glucanotransferase of Bacillus ohbensis doubles the production of gamma-cyclodextrin. J Biotechnol 32:283–288CrossRefPubMedGoogle Scholar
  89. Strokopytov B, Penninga D, Rozeboom HJ (1995) X-ray structure of cyclodextrin glycosyltransferase complexed with acarbose. Implications for the catalytic mechanism of glycosidases. Biochemistry 34:2234–2240PubMedGoogle Scholar
  90. Suzuki Y, Suzuki K (1991) Enzymatic formation of 4G-alpha-d-glucopyranosyl-rutin. Agric Biol Chem 55:181–184PubMedGoogle Scholar
  91. Szejtli J (1988) Cyclodextrin technology. Kluwer, Dordrecht, pp 1–78Google Scholar
  92. Takada M, Nakagawa Y, Yamamoto M (2003) Biochemical and genetic analyses of a novel gamma-cyclodextrin glucanotransferase from an alkalophilic Bacillus clarkii 7364. J Biochem 133:317–324CrossRefGoogle Scholar
  93. Takano T, Fukuda M, Monma M, Kobayashi S, Kainuma K, Yamane K (1986) Molecular cloning, DNA nucleotide sequencing, and expression in Bacillus subtilis cells of the Bacillus macerans cyclodextrin glucanotransferase gene. J Bacteriol 166:1118–1122PubMedGoogle Scholar
  94. Tanaka M, Muto N, Yamamoto I (1991) Characterization of Bacillus stearothermophilus cyclodextrin glucanotransferase in ascorbic acid 2-O-alpha-glucoside formation. Biochim Biophys Acta 1078:127–132PubMedGoogle Scholar
  95. Terada Y, Yanase M, Takata H, Takaha T, Okada S (1997) Cyclodextrins are not the major cyclic alpha-1,4-glucans produced by the initial action of cyclodextrin glucanotransferase on amylose. J Biol Chem 272:15729–15733CrossRefPubMedGoogle Scholar
  96. Terada Y, Sanbe H, Takaha T, Kitahata S, Koizumi K, Okada S (2001) Comparative study of the cyclization reactions of three bacterial cyclomaltodextrin glucanotransferases. Appl Environ Microbiol 67:1453–1460CrossRefPubMedGoogle Scholar
  97. Uchida K, Suzuki Y (1998) Enzymatic synthesis of a new derivative of thiamin, O-alpha-glucosylthiamin. Biosci Biotechnol Biochem 62:221–224PubMedGoogle Scholar
  98. Uitdehaag JC, Kalk KH, Veen BA van der, Dijkhuizen L, Dijkstra BW (1999) The cyclization mechanism of cyclodextrin glycosyltransferase (CGTase) as revealed by a gamma-cyclodextrin-CGTase complex at 1. 8-A resolution. J Biol Chem 274:34868–34876CrossRefPubMedGoogle Scholar
  99. Veen BA van der, Uitdehaag JC, Dijkstra BW, Dijkhuizen L (2000a) The role of arginine 47 in the cyclization and coupling reactions of cyclodextrin glycosyltransferase from Bacillus circulans strain 251 implications for product inhibition and product specificity. Eur J Biochem 267:3432–3441CrossRefPubMedGoogle Scholar
  100. Veen BA van der, Uitdehaag JC, Penninga D, Alebeek GJ van, Smith LM, Dijkstra BW, Dijkhuizen L (2000b) Rational design of cyclodextrin glycosyltransferase from Bacillus circulans strain 251 to increase alpha-cyclodextrin production. J Mol Biol 296:1027–1038CrossRefPubMedGoogle Scholar
  101. Veen BA van der, Uitedehaag J, Dijkstra BW, Dijkhuizen L (2000c) Engineering of cyclodextrin glycosyltransferase reaction and product specificity. Biochim Biophys Acta 1543:336–360PubMedGoogle Scholar
  102. Wind RD, Liebl W, Buitelaar RM, Penninga D, Spreinat A, Dijkhuizen L, Bahl H (1995) Cyclodextrin formation by the thermostable alpha-amylase of Thermoanaerobacterium thermosulfurigenes EM1 and reclassification of the enzyme as a cyclodextrin glycosyltransferase. Appl Environ Microbiol 61:1257–1265PubMedGoogle Scholar
  103. Wind RD, Buitelaar RM, Dijkhuizen L (1998) Engineering of factors determining alpha-amylase and cyclodextrin glycosyltransferase specificity in the cyclodextrin glycosyltransferase from Thermoanaerobacterium thermosulfurigenes EM1. Eur J Biochem 253:598–605CrossRefPubMedGoogle Scholar
  104. Wouters J, Bergman B, Janson S (2003) Cloning and expression of a putative cyclodextrin glucosyltransferase from the symbiotically competent cyanobacterium Nostoc sp. PCC 9229. FEMS Microbiol Lett 219:181–185CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  1. 1.Life Science SchoolShandong UniversityJinanP.R. China
  2. 2.Department of Bioprocess TechnologyChemnitz University of TechnologyChemnitzGermany

Personalised recommendations