Applied Microbiology and Biotechnology

, Volume 66, Issue 2, pp 131–142 | Cite as

Industrial bioconversion of renewable resources as an alternative to conventional chemistry

  • Th. Willke
  • K.-D. Vorlop


There are numerous possibilities for replacing chemical techniques with biotechnological methods based on renewable resources. The potential of biotechnology (products, technologies, metabolic pathways) is for the most part well known. Often the costs are still the problem. Biotechnological advances have the best chances for replacing some fine chemicals. While the raw material costs are less of a consideration here, the environmental benefit is huge, as chemical-technical processes often produce a wide range of undesirable/harmful by-products or waste. In the case of bulk chemicals (<US $1/kg) the product price is affected mainly by raw material costs. As long as fossil raw materials are still relatively inexpensive, alternatives based on renewable resources cannot establish themselves. Residues and waste, which are available even at no cost in some cases, are an exception. The introduction of new technologies for the efficient use of such raw materials is currently being promoted. The utilisation of residual wood, plant parts, waste fat, and crude glycerol, for example, provides great potential. For industrial chemicals (US $2–4/kg), process and recovery costs play a greater role. Here, innovative production technologies and product recovery techniques (e.g. on-line product separation) can increase competitiveness.


Fermentation Cyclodextrin Renewable Resource Poly Hydroxy Alkanoates Crude Glycerol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Anonymous (2000) The DOE ethanol pilot plant—a tool for commercializationGoogle Scholar
  2. Anonymous (2004) Biotechnology in plastics. Biotech Newslett 1.
  3. Babel W, Steinbüchel A (2001) Biopolyesters. Advances in biochemical engineering/biotechnology. Springer, Berlin Heidelberg New YorkGoogle Scholar
  4. Balkcom M, Welt B, Berger K (2002) Notes from the packaging laboratory: polylactic acid—an exciting new packaging material. ABE 339, Institute of Food and Agricultural Sciences, University of Florida. Online publicationGoogle Scholar
  5. Baum P, Engelmann J (2001) Angewandte Makromolekulare Chemie. Nachr Chemie 49:3Google Scholar
  6. Bayer (2003) Product information baypure.
  7. Beer T, Grant T, Morgan G, Lapszewicz J, Anyon P, Edwards J, Nelson P, Watson H, Williams D (2002) Comparison of transport fuels—final report to the Australian Greenhouse Office on the stage 2 study of life-cycle emissions analysis of alternative fuels for heavy vehicles. EV45A/2/F3C, CSIRO/University of Melbourne, Centre for Design at RMIT Parsons Australia Pty Ltd and Southern Cross Institute of Health Research.
  8. Berg C (2001) World ethanol production 2001.
  9. Blaschek HP, Annous B, Formanek J, Chen CC (2002) Method of producing butanol using a mutant strain of Clostridium beijernickii. US Patent 6358717 B1Google Scholar
  10. BRDTAC (2002a) Roadmap for biomass technologies in the United States. Biomass R&D Technical Advisory Committee.
  11. BRDTAC (2002b) Vision for bioenergy & biobased products in the United States. Biomass R&D Technical Advisory Committee.
  12. Brellochs A, Schmolke A, Wolff H (2001) Substitution chemisch-technischer Prozesse durch biotechnische Verfahren am Beispiel ausgewählter Grund- und Feinchemikalien. Forschungsbericht 298 67 411 UBA-FB 000131. Prognos AG. 29867411, 1-203. Umweltbundesamt, BerlinGoogle Scholar
  13. Cargill (2003) Press release: Cargill and Codexis launch research collaboration to develop industrial bioproducts platform.
  14. Cargill Dow Polymers (2003) Company financials: business segments: industrial, last modified 18-Mar-2003.
  15. CMR (2002) Cargill dow opens natureworks PLA plant. Chemical market reporterGoogle Scholar
  16. Crabbe E, Nolasco-Hipolito C, Kobayashi G, Sonomoto K, Ishizaki A (2001) Biodiesel production from crude palm oil and evaluation of butanol extraction and fuel properties. Process Biochem 37:65–71CrossRefGoogle Scholar
  17. CTD (2003) Cyclodextrine technology development: volume usage projection.
  18. Duda A, Penczek S (2003) Polylactide [poly(lactic acid)]: synthesis, properties and applications. Polimery 48:16–27Google Scholar
  19. Dupont (2001) Press release: Genencor International and Dupont expand R&D collaboration to make key biobased polymer.
  20. EU (2003) Directive 2003/30/EC of the European Parliament and of the council of 8 May 2003 on the promotion of the use of biofuels or other renewable fuels for transport. Off J Eur Union 46(L123):42–47Google Scholar
  21. Eyring EM, Meuzelaar HLC, Pugmire RJ (2000) Synthesis and testing of diethyl carbonate as a possible diesel fuel additive. In: Huffman GP (Hrsg) Cooperative research in C1 chemistry, consortium for fossil fuel liquefaction science. Annual report on research conducted from May 1, 2000 to April 30, 2001. DOE cooperative agreement no. DE-FC26-99FT40540Google Scholar
  22. Ezeji TC, Qureshi N, Blaschek HP (2004) Acetone butanol ethanol (ABE) production from concentrated substrate: reduction in substrate inhibition by fed-batch technique and product inhibition by gas stripping. J Appl Microbiol 63:653–658CrossRefGoogle Scholar
  23. Felcht U-H (2003) Press release. Economic Press Conference Frankfurt am Main, DECHEMA Haus, 8 April 2003.
  24. FNR (2003) Informationen zum nachwachsenden Rohstoff Zucker.
  25. Gapes JR (2000a) The economics of acetone-butanol fermentation: theoretical and market considerations. J Mol Microbiol Biotechnol 2:27–32PubMedGoogle Scholar
  26. Gapes JR (2000b) The history of the acetone-butanol project in Austria. J Mol Microbiol Biotechnol 2:5–8PubMedGoogle Scholar
  27. Gröger M, Kretzer EK, Woyke A (2001) Cyclodextrine. Universität Siegen, Siegen. Scholar
  28. Hancock RD, Viola R (2001) The use of micro-organisms for l-ascorbic acid production: current status and future perspectives. Appl Microbiol Biotechnol 56:567–576CrossRefPubMedGoogle Scholar
  29. Hestekin J, Snyder S, Davison B (2002) Direct capture of products from biotransformations. 1–13. Oak Ridge, Vision 2020.
  30. Hiller K, Kehrer P (2000) Erdöl Erdgas Kohle 116:427Google Scholar
  31. Ingram O, Gomez PF, Lai X, Moniruzzaman M, Wood BE, Yomano LP, York SW (2002) Metabolic engineering of bacteria for ethanol production. Biotechnol Bioeng 58:204–214CrossRefGoogle Scholar
  32. Iogen (2004) Press release from 21 April, 2004: cellulose ethanol is ready to go.
  33. Jahnz U, Schubert M, Vorlop KD (2001) Effective development of a biotechnical process: screening, genetic engineering, and immobilization for the enzymatic conversion of inulin to DFA III on industrial scale. Landbauforsch Volkenrode 51:131–136Google Scholar
  34. Jeanroy A (2000) Ethanol und ETBE: derzeitiger Stand und Aussichten. Zuckerindustrie 125:728–733Google Scholar
  35. de Jesus D, Nghiem NP (2002) Student abstracts: chemistry at ORNL—abstract ethanol production from rice-straw hydrolyzate using Zymomonas mobilis in a continuous Fluidized-Bed Reactor (FBR).
  36. Lang S, Trowitzsch-Kienast W (2003) Biotenside. Chemie in der Praxis. Teubner, WiesbadenGoogle Scholar
  37. Lawford HG, Rousseau JD (2003) Cellulosic fuel ethanol—alternative fermentation process designs with wild-type and recombinant Zymomonas mobilis. Appl Biochem Biotechnol 105:457–469CrossRefGoogle Scholar
  38. Lee SY, Hong SH (2002) Engineering of Escherichia coli central metabolic pathways for the production of succinic acid. Biol Syst Eng 830:30–38Google Scholar
  39. Merck (1998) Pressemitteilung: BASF, Cerestar und Merck legen Grundstein für Gemeinschaftsunternehmen. OpenDocument
  40. Nguyen QA, Dickow JH, Duff BW, Farmer JD, Glassner DA, Ibsen KN, Ruth MF, Schell DJ, Thompson IB, Tucker MP (1996) NREL/DOE ethanol pilot-plant: current status and capabilities. Bioresour Technol 58:189–196CrossRefGoogle Scholar
  41. NRC (2000) Biobased industrial products: priorities for research and commercialisation. National Research Council, Washington. Scholar
  42. OECD (1998) Biotechnology for clean industrial products and processes. OECD, Paris, p 30Google Scholar
  43. PERP (1998) PERP-report: propanediol (1,3-), biotransformation routes to 97S4. Chem Systems, New York. Scholar
  44. Prusse U, Fox B, Kirchhoff M, Bruske F, Breford J, Vorlop KD (1998) New process (jet cutting method) for the production of spherical beads from highly viscous polymer solutions. Chem Eng Technol 21:29–33CrossRefGoogle Scholar
  45. Qureshi N, Blaschek HP (2001) Recent advances in ABE fermentation: hyper-butanol producing Clostridium beijerinckii BA101. J Ind Microbiol Biotechnol 27:287–291CrossRefPubMedGoogle Scholar
  46. Rau U, Hammen S, Heckmann R, Wray V, Lang S (2001) Sophorolipids: a source for novel compounds. Ind Crops Prod 13:85–92CrossRefGoogle Scholar
  47. Ritter SK (2003) Green reward—presidential honors recognize innovative syntheses, process improvements, and new products that promote pollution prevention. Chem Eng News Sci Technol 81:30–35Google Scholar
  48. Rose T, Kunz M (2002) Production of isomalt. In: Prüße U, Vorlop K-D (eds) Practical aspects of encapsulation technologies. Bundesforschungsanstalt für Landwirtschaft. Braunschweig. Landbauforsch Völkenrode Sonderh 241:75–80Google Scholar
  49. Rosenberger A, Kaul HP, Senn T, Aufhammer W (2002) Costs of bioethanol production from winter cereals: the effect of growing conditions and crop production intensity levels. Ind Crops Prod 15:91–102CrossRefGoogle Scholar
  50. Römpp (1998) Römpp Chemie Lexikon, 10th edn. Falbe J, Regitz M (eds)Google Scholar
  51. Schmidt-Bleek F (2000) Das MIPS-Konzept. Droemer/Knaur, MünchenGoogle Scholar
  52. Steinbüchel A (2002) Forschungsschwerpunkt 2001–2002: biosynthesis of polyamides.
  53. Südzucker AG (2004) Isomalt—Internet presentation.
  54. TIG (2002) The innovation group—chemical profiles on Internet.
  55. VDI (2004) Ökosprit mit Makel. VDI-Nachrichten 9:11Google Scholar
  56. Viola R (2002) Development of a yeast-based single-step process for the manufacture of l-ascorbic acid (vitamin C).
  57. Wee YJ, Yun JS, Kang KH, Ryu HW (2002) Continuous production of succinic acid by a fumarate-reducing bacterium immobilized in a hollow-fiber bioreactor. Appl Biochem Biotechnol 98:1093–1104CrossRefGoogle Scholar
  58. Weizsäcker EU von, Lovins AB, Hunter Lovins L (1997) Faktor vier: doppelter Wohlstand—halbierter Verbrauch. Der neue Bericht an den Club of Rome. Droemer/Knaur, MünchenGoogle Scholar
  59. Willke T, Vorlop KD (2001) Biotechnological production of itaconic acid. Appl Microbiol Biotechnol 56:289–295CrossRefPubMedGoogle Scholar
  60. Willke T, Vorlop K-D (2003) Bioverfahrenstechnik. In: Matthies (Hrsg) Jahrbuch Agrartechnik. Landwirtschafts, Münster, pp 207–217Google Scholar
  61. Willke T, Welter K, Vorlop KD (2001) Biotechnological production of itaconic acid from sugar. Zuckerindustrie 126:444–447Google Scholar
  62. WVZ (2003) Wirtschaftliche Vereinigung Zucker, Informationen zum Zuckermarkt Stand 3/2003.
  63. Zaldivar J, Nielsen J, Olsson L (2001) Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integration. Appl Microbiol Biotechnol 56:17–34CrossRefPubMedGoogle Scholar
  64. Zaldivar J, Borges A, Johansson B, Smits HP, Villas-Boas SG, Nielsen J, Olsson L (2002) Fermentation performance and intracellular metabolite patterns in laboratory and industrial xylose-fermenting Saccharomyces cerevisiae. Appl Microbiol Biotechnol 59:436–442CrossRefPubMedGoogle Scholar
  65. Zeikus JG, Jain MK, Elankovan P (1999) Biotechnology of succinic acid production and markets for derived industrial products. Appl Microbiol Biotechnol 51:545–552CrossRefGoogle Scholar
  66. Zvosec R (2003) 3-Hydroxypropionic acid—a new intermediate platform.

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  1. 1.Federal Agricultural Research CentreInstitute of Technology and Biosystems EngineeringBraunschweigGermany

Personalised recommendations