Skip to main content

Advertisement

Log in

RNA interference: potential therapeutic targets

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

One of the most exciting findings in recent years has been the discovery of RNA interference (RNAi). RNAi methodologies hold the promise to selectively inhibit gene expression in mammals. RNAi is an innate cellular process activated when a double-stranded RNA (dsRNA) molecule of greater than 19 duplex nucleotides enters the cell, causing the degradation of not only the invading dsRNA molecule, but also single-stranded (ssRNAs) RNAs of identical sequences, including endogenous mRNAs. The use of RNAi for genetic-based therapies has been widely studied, especially in viral infections, cancers, and inherited genetic disorders. As such, RNAi technology is a potentially useful method to develop highly specific dsRNA-based gene-silencing therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdelgany AV, Wood MJA, Beeson D (2003) Allele-specific gene silencing of a pathogenic mutant acetylcholine receptor subunit by RNA interference. Hum Mol Genet 12:2637–2644

    Article  CAS  PubMed  Google Scholar 

  • Agami R (2002) RNAi and related mechanisms and their potential use for therapy. Curr Opin Chem Biol 6:829–834

    Article  CAS  PubMed  Google Scholar 

  • Agrawal N, Malhotra P, Bhatnagar RK (2004) siRNA-directed silencing of transgene expressed in cultured insect cells. Biochem Biophys Res Commun 320:428–434

    Article  CAS  PubMed  Google Scholar 

  • Ahlquist P (2002) RNA-dependent RNA polymerases, viruses, and RNA silencing. Science 296:1270–1273

    Article  CAS  PubMed  Google Scholar 

  • Barton GM, Medzhitov R (2002) Retroviral delivery of small interfering RNA into primary cells. Proc Natl Acad Sci USA 99:14943–14945

    Article  CAS  PubMed  Google Scholar 

  • Bass BL (2001) RNA interference. The short answer. Nature 411:428–429

    Article  CAS  PubMed  Google Scholar 

  • Bernstein E, Caudy AA, Hammond SM, Hannon GJ (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409:363–366

    Article  CAS  PubMed  Google Scholar 

  • Bridge AJ, Pebernard S, Ducraux A, Nicoulaz AL, Iggo R (2003) Induction of an interferon response by RNAi vectors in mammalian cells. Nat Genet 34:263–264

    Article  CAS  PubMed  Google Scholar 

  • Brummelkamp TR, Bernards R, Agami R (2002a) A system for stable expression of short interfering RNAs in mammalian cells. Science 296:550–553

    Google Scholar 

  • Brummelkamp TR, Bernards R, Agami R (2002b) Stable suppression of tumorigenicity by virus-mediated RNA interference. Cancer Cell 2:243–247

    Article  CAS  PubMed  Google Scholar 

  • Caplen NJ (2002) A new approach to the inhibition of gene expression. Trends Biotechnol 20:49–51

    Article  CAS  PubMed  Google Scholar 

  • Caplen NJ, Parrish S, Imani F, Fire A, Morgan RA (2001) Specific inhibition of gene expression by small double-stranded RNAs in invertebrate and vertebrate systems. Proc Natl Acad Sci USA 98:9742–9747

    Article  CAS  PubMed  Google Scholar 

  • Caplen NJ, Taylor JP, Statham VS, Tanaka F, Fire A, Morgan RA (2002) Rescue of polyglutamine-mediated cytotoxicity by double-stranded RNA-mediated RNA interference. Hum Mol Genet 11:175–184

    Article  CAS  PubMed  Google Scholar 

  • Cerutti H (2003) RNA interference: traveling in the cell and gaining functions? Trends Genet 19:39–46

    Article  CAS  PubMed  Google Scholar 

  • Davidson BL, Paulson HL (2004) Molecular medicine for the brain: silencing of disease genes with RNA interference. Lancet Neurol 3:145–149

    Article  CAS  PubMed  Google Scholar 

  • Denli AM, Hannon GJ (2003) RNAi: an ever-growing puzzle. Trends Biochem Sci 28:196–201

    Article  CAS  PubMed  Google Scholar 

  • Dillin A (2003) The specifics of small interfering RNA specificity, Proc Natl Acad Sci USA 100:6289–6291

    Article  CAS  PubMed  Google Scholar 

  • Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T (2001a) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411:494–498

    Article  CAS  PubMed  Google Scholar 

  • Elbashir SM, Lendeckel W, Tuschl T (2001b) RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev 15:188–200

    Article  CAS  PubMed  Google Scholar 

  • Elbashir SM, Martinez J, Patkaniowska A, Lendeckel W, Tuschl T (2001c) Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. EMBO J 20:6877–6888

    Article  CAS  PubMed  Google Scholar 

  • Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    Article  CAS  PubMed  Google Scholar 

  • Gil J, Esteban M (2000) Induction of apoptosis by the dsRNAdependent protein kinase (PKR): mechanism of action. Apoptosis 5:107–114

    Article  CAS  PubMed  Google Scholar 

  • Gitlin L, Karelsky S, Andino R (2002) Short interfering RNA confers intracellular antiviral immunity in human cells. Nature 418:430–434

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Alegre P, Miller VM, Davidson BL, Paulson HL (2003) Toward therapy for DYT1 dystonia: allele-specific silencing of mutant. Ann Neurol 53:781–787

    Article  CAS  PubMed  Google Scholar 

  • Grunweller A, Wyszko E, Bieber B, Jahnel R, Erdmann VA, Kurreck J (2003) Comparison of different antisense strategies in mammalian cells using locked nucleic acids, 2V-O-methyl RNA, phosphorothioates and small interfering RNA. Nucleic Acids Res 31:3185–3193

    Article  PubMed  Google Scholar 

  • Guo S, Kemphues KJ (1995) Par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed. Cell 81:611–620

    Article  CAS  PubMed  Google Scholar 

  • Hagstrom JE (2000) Self-assembling complexes for in vivo gene delivery. Curr Opin Mol Ther 2:143–149

    CAS  PubMed  Google Scholar 

  • Hammond SM, Bernstein E, Beach D, Hannon GJ (2000) An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophilia cells. Nature 404:293–296

    Article  CAS  PubMed  Google Scholar 

  • Hammond SM, Boettcher S, Caudy AA, Kobayashi R, Hannon GJ (2001) Argonaute2, a link between genetic and biochemical analyses of RNAi. Science 293:1146–1150

    Article  CAS  PubMed  Google Scholar 

  • Hannon GJ (2002) RNA interference. Nature 418:244–251

    Article  CAS  PubMed  Google Scholar 

  • Harborth J, Elbashir SM, Bechert K, Tuschl T, Weber K (2001) Identification of essential genes in cultured mammalian cells using small interfering RNAs. J Cell Sci 114:4557–4565

    CAS  PubMed  Google Scholar 

  • Holen T, Mobbs CV (2004) Lobotomy of genes: use of RNA interference in neuroscience. Neuroscience 126:1–7

    Article  CAS  PubMed  Google Scholar 

  • Hough SR, Wiederholt KA, Burrier AC, Woolf TM, Taylor MF (2003) Why RNAi makes sense. Nat Biotechnol 21:731–732

    Article  CAS  PubMed  Google Scholar 

  • Hutvagner G, Zamore PD (2002) RNAi: nature abhors a double-strand. Curr Opin Genet Dev 12:225–232

    Article  CAS  PubMed  Google Scholar 

  • Hutvagner G, McLachlan J, Pasquinelli AE, Balint E, Tuschl T, Zamore PD (2001) A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 293:834–838

    Article  CAS  PubMed  Google Scholar 

  • Jacque JM, Triques K, Stevenson M (2002) Modulation of HIV-1 replication by RNA interference. Nature 418:435–438

    Article  CAS  PubMed  Google Scholar 

  • Jain KK (2004) RNAi and siRNA in target validation. Drug Discov Today 9:307–309

    Article  PubMed  Google Scholar 

  • Johnson L, Greenbaum D, Cichowski K, Mercer K, Murphy E, Schmitt E et al (1997) K-ras is an essential gene in the mouse with partial functional overlap with N-ras. Genes Dev 11:2468–2481

    CAS  PubMed  Google Scholar 

  • Johnson-Saliba M, Jans DA (2001) Gene therapy: optimising DNA delivery to the nucleus. Curr Drug Targets 2:371–399

    CAS  PubMed  Google Scholar 

  • Kennerdell JR, Carthew RW (2000) Heritable gene silencing in Drosophila using double-stranded RNA. Nat Biotechnol 18:896–898

    Article  CAS  PubMed  Google Scholar 

  • Ketting RF, Plasterk RH (2000) A genetic link between co-suppression and RNA interference in C. elegans. Nature 404:296–298

    Article  CAS  PubMed  Google Scholar 

  • Ketting RF, Haverkamp TH, van Luenen HG, Plasterk RH (1999) Mut-7 of C. elegans, required for transposon silencing and RNA interference, is a homolog of Werner syndrome helicase and RnaseD. Cell 99:133–141

    Article  CAS  PubMed  Google Scholar 

  • Ketting RF, Fischer SE, Bernstein E, Sijen T, Hannon GJ, Plasterk RH (2001) Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev 15:2654–2659

    Article  CAS  PubMed  Google Scholar 

  • Kim VN (2003) RNA interference in functional genomics and medicine. J Korean Med Sci 18:309–318

    CAS  PubMed  Google Scholar 

  • Knight SW, Baas BL (2001) A role for the RNase III enzyme DCR-1 in RNA interference and germ line development in Caenorhabditis elegans. Science 293:2269–2271

    Article  CAS  PubMed  Google Scholar 

  • Korea K, Nakamura K, Nakao K, Miyoshi J, Toyoshima K, Hatta T et al (1997) K-ras is essential for the development of the mouse embryo. Oncogene 15:1151–1159

    Article  PubMed  Google Scholar 

  • Krichevsky AM, Kosik KS (2002) RNAi functions in cultured mammalian neurons. Proc Natl Acad Sci USA 99:11926–11929

    Article  CAS  PubMed  Google Scholar 

  • Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J, Lendeckel W, Tuschl T (2002) Identification of tissue-specific micro RNAs from mouse. Curr Biol 12:735–739

    Article  CAS  PubMed  Google Scholar 

  • Lai EC (2002) Micro RNAs are complementary to 3′?UTR sequence motifs that mediate negative post-transcriptional regulation. Nat Genet 30:363–364

    Article  CAS  PubMed  Google Scholar 

  • Lau NC, Lim LP, Weinstein EG, Bartel DP (2001) An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294:858–862

    Article  CAS  PubMed  Google Scholar 

  • Lee RC, Ambros V (2001) An extensive class of small RNAs in Caenorhabditis elegans. Science 294:862–864

    Article  CAS  PubMed  Google Scholar 

  • Lee NS, Rossi JJ (2004) Control of HIV-1 replication by RNA interference. Virus Res 102:53–58

    Article  CAS  PubMed  Google Scholar 

  • Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854

    Article  CAS  PubMed  Google Scholar 

  • Lee JA, Kim HK, Kim KH, Han JH, Lee JS, Lim CS, Chang D, Kubo T, Kaang BK (2001) Overexpression of and RNA interference with the CCAAT enhancer-binding protein on long-term facilitation of Aplysia sensory to motor synapses. Learn Mem 8:220–226

    Article  PubMed  Google Scholar 

  • Lee NS, Dohjima T, Bauer G, Li H, Li MJ, Ehsani A, Salvaterra P, Rossi J (2002) Expression of small interfering RNAs targeted against HIV-1 rev transcripts in human cells. Nat Biotechnol 20:500–505

    CAS  PubMed  Google Scholar 

  • Lewis DL, Hagstrom JE, Loomis AG, Wolff JA, Herweijer H (2002) Efficient delivery of siRNA for inhibition of gene expression in postnatal mice. Nat Genet 32:107–108

    Article  CAS  PubMed  Google Scholar 

  • Lieberman J, Song E, Lee SK, Shankar P (2003) Interfering with disease: opportunities and roadblocks to harnessing RNA interference. Trends Mol Med 9:397–403

    Article  CAS  PubMed  Google Scholar 

  • Mand MT, Plasterk RHA (2004) Dicer at RISC: the mechanism of RNAi. Cell 117:1–3

    PubMed  Google Scholar 

  • Martinez J, Patkaniowska A, Urlaub H, Luhrmann R, Tuschl T (2002) Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell 110:563–574

    Article  CAS  PubMed  Google Scholar 

  • Matsukura S, Jones PA, Takai D (2003) Establishment of conditional vectors for hairpin siRNA knockdowns. Nucleic Acids Res 31:e77

    Article  PubMed  Google Scholar 

  • McCaffrey AP, Meuse L, Pham TT, Conklin DS, Hannon GJ, Kay MA (2002) RNA interference in adult mice. Nature 418:38–39

    Article  CAS  PubMed  Google Scholar 

  • Miller VM, Xia H, Marrs GL, Gouvion CM, Lee G, Davidson BL, Paulson HL (2003) Allele-specific silencing of dominant disease genes. Proc Natl Acad Sci USA 100:7195–7200

    Article  CAS  PubMed  Google Scholar 

  • Miyagishi M, Taira K (2002) U6 promoter-driven siRNAs with four uridine 3′ overhangs efficiently suppress targeted gene expression in mammalian cells. Nat Biotechnol 19:497–500

    Article  Google Scholar 

  • Moss EG (2003) Silencing unhealthy alleles naturally. Trends Biotechnol 21:185–187

    Article  CAS  PubMed  Google Scholar 

  • Nadine L, Vastenhouw, Plasterk RHA (2004) RNAi protects the Caenorhabditis elegans germline against transposition. Trends Genet 20:314–319

    Article  PubMed  Google Scholar 

  • Napoli C, Lemieux C, Jorgensen R (1990) Introduction of a chimeric chalcone synthase gene into petunia results in reversible cosuppression of homologous genes in trans. Plant Cell 2:279–289

    Article  CAS  PubMed  Google Scholar 

  • Novina CD, Murray MF, Dykxhoorn DM, Beresford PJ, Riess J, Lee SK, Collman RG, Lieberman J, Shankar P, Sharp PA (2002) siRNA-directed inhibition of HIV-1 infection. Nat Med 8:681–686

    CAS  PubMed  Google Scholar 

  • Omi K, Tokunaga K, Hohjoh H (2004) Long lasting RNAi activity in mammalian neurons. FEBS Lett 558:89–95

    Article  CAS  PubMed  Google Scholar 

  • Paddison PJ, Caudy AA, Bernstein E, Hannon GJ, Conklin DS (2002) Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev 16:948–958

    Article  CAS  PubMed  Google Scholar 

  • Pal-Bhadra M, Bhadra U, Birchler JA (2002) RNAi related mechanisms affect both transcriptional and posttranscriptional transgene silencing in Drosophila. Mol Cell 9:315–327

    Article  CAS  PubMed  Google Scholar 

  • Parrish S, Fire A (2001) Distinct roles for RDE-1 and RDE-4 during RNA interference in Caenorhabditis elegans. RNA 7:1397–1402

    CAS  PubMed  Google Scholar 

  • Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR, Ruvkun G (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403:901–906

    Article  CAS  PubMed  Google Scholar 

  • Rubinson DA, Dillon CP, Kwiatkowski AV, Sievers C, Yang L, Kopinja J, Zhang M, McManus MT, Gertler FB, Scott ML, Van Parijs L (2003) A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nat Genet 33:401–406

    Article  CAS  PubMed  Google Scholar 

  • Schütze N (2004) siRNA technology. Mol Cell Endocrinol 213:115–119

    Article  PubMed  Google Scholar 

  • Senthil K, Radhakrishnan M, Thomas J, Gartel AL (2004) RNA interference as a new strategy against viral hepatitis. Virology 323:173–181

    Article  PubMed  Google Scholar 

  • Sharp PA (2001) RNA interference—2001. Genes Dev 15:485–490

    Article  CAS  PubMed  Google Scholar 

  • Shuey DJ, McMallus DE, Giordano T (2002) RNAi: gene-silencing in therapeutic intervention. Drug Discov Today 7:1040–1046

    Article  CAS  PubMed  Google Scholar 

  • Sorensen DR, Leirdal M, Sioud M (2003) Gene silencing by systemic delivery of synthetic siRNAs in adult mice. J Mol Biol 327:761–766

    Article  CAS  PubMed  Google Scholar 

  • Stein P, Svoboda P, Anger M, Schultz RM (2003) RNAi: mammalian oocytes do it without RNA-dependent RNA polymerase. RNA 9:187–192

    Article  CAS  PubMed  Google Scholar 

  • Sui G, Soohoo C, Affar EB, Gay F, Shi Y, Forrester WC (2002) A DNA vector-based RNAi technology to suppress gene expression in mammalian cells. Proc Natl Acad Sci USA 99:5515–5520

    Article  CAS  PubMed  Google Scholar 

  • Tabara H, Grishok A, Mello CC (1998) RNAi in C. elegans: soaking in the genome sequence. Science 282:430–431

    Article  CAS  PubMed  Google Scholar 

  • Tabara H, Sarkissian M, Kelly WG, Fleenor J, Grishok A, Timmons L, Fire A, Mello CC (1999) The rde-1 gene, RNA interference, and transposon silencing in C. elegans. Cell 99:123–132

    Article  CAS  PubMed  Google Scholar 

  • Tiscornia G, Singer O, Ikawa M, Verma IM (2003) A general method for gene knockdown in mice by using lentiviral vectors expressing small interfering RNA. Proc Natl Acad Sci USA 100:1844–1848

    Article  CAS  PubMed  Google Scholar 

  • Ui-Tei K, Zenno S, Miyata Y, Saigo K (2000) Sensitive assay of RNA interfernce in Drosophila and Chinese hamster cultured cells using firefly luciferase gene as target. FEBS Lett 479:79–82

    Article  CAS  PubMed  Google Scholar 

  • Wianny F, Zernicka-Goetz M (2000) Specific interference with gene function by double-stranded RNA in early mouse development. Nat Cell Boil 2:70–75

    Article  CAS  Google Scholar 

  • Winston WM, Molodowitch C, Hunter CP (2002) Systemic RNAi in C. elegans requires the putative transmembrane protein SID-1. Science 95:2456–2459

    Article  Google Scholar 

  • Wood MJ, Trulzsch B, Abdelgany A, Beeson D (2003) Therapeutic gene silencing in the nervous system. Hum Mol Genet 12:R279–R284

    Article  CAS  PubMed  Google Scholar 

  • Xia H, Mao Q, Paulson HL, Davidson BL (2002) siRNA-mediated gene silencing in vitro and in vivo. Nat Biotechnol 20:1006–1010

    Article  CAS  PubMed  Google Scholar 

  • Yu JY, DeRuiter SL, Turner DL (2002) RNA interference by expression of short interfering RNAs and hairpin RNAs in mammalian cells. Proc Natl Acad Sci USA 99:6047–6052

    Article  CAS  PubMed  Google Scholar 

  • Zamore PD, Tuschl T, Sharp PA, Bartel DP (2000) RNAi: doublestranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 101:25–33

    Article  CAS  PubMed  Google Scholar 

  • Zender L, Hutker S, Liedtke C, Flemming P, Malek NP, Trautwein C, Manns MP, Kuhnel F, Kubicka S (2003) Caspase 8 small interfering RNA prevents acute liver failure in mice. Proc Natl Acad Sci USA 100:7797–7802

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Chakraborty.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jana, S., Chakraborty, C., Nandi, S. et al. RNA interference: potential therapeutic targets. Appl Microbiol Biotechnol 65, 649–657 (2004). https://doi.org/10.1007/s00253-004-1732-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-004-1732-1

Keywords

Navigation