Applied Microbiology and Biotechnology

, Volume 66, Issue 6, pp 689–695 | Cite as

Quorum-sensing antagonist (5Z)-4-bromo-5-(bromomethylene)-3-butyl-2(5H)-furanone influences siderophore biosynthesis in Pseudomonas putida and Pseudomonas aeruginosa

  • Dacheng Ren
  • Rongjun Zuo
  • Thomas K. Wood
Applied Microbial and Cell Physiology


Siderophore synthesis of Pseudomonas putida F1 was found to be regulated by quorum sensing since normalized siderophore production (per cell) increased 4.2-fold with cell density after the cells entered middle exponential phase; similarly, normalized siderophore concentrations in Pseudomonas aeruginosa JB2 increased 28-fold, and a 5.5-fold increase was seen for P. aeruginosa PAO1. Further evidence of the link between quorum sensing and siderophore synthesis of P. putida F1 was that the quorum-sensing-disrupter (5Z)-4-bromo-5-(bromomethylene)-3-butyl-2(5H)-furanone (furanone) from the marine red alga Delisea pulchra was found to inhibit the formation of the siderophore produced by P. putida F1 in a concentration-dependent manner, with 57% siderophore synthesis repressed by 100 μg/ml furanone. In contrast, this furanone did not affect the siderophore synthesis of Burkholderia cepacia G4 at 20–40 μg/ml, and stimulated siderophore synthesis of P. aeruginosa JB2 2.5- to 3.7-fold at 20–100 μg/ml. Similarly, 100 μg/ml furanone stimulated siderophore synthesis in P. aeruginosa PAO1 about 3.5-fold. The furanone appears to interact with the quorum-sensing machinery of P. aeruginosa PAO1 since it stimulates less siderophore synthesis in the P. aeruginosa qscR quorum-sensing mutant (QscR is a negative regulator of LasI, an acylated homoserine lactone synthase).


Siderophore Production Furanone Bromomethylene Acylated Homoserine Lactone Siderophore Synthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This study was supported by the Electric Power Research Institute (EP-P6965/C3530). We thank Dr. Tim Mcdermott (Montana State University) for his gift of P. aeruginosa PAO1, and Dr. Peter Greenberg (University of Iowa) for sending strains P. aeruginosa PAOR3 and PAOR3/pKL9.


  1. Banin E, Greenberg EP (2003) Iron and Pseudomonas aeruginosa biofilm formation. Pseudomonas 2003, Québec City, Québec, CanadaGoogle Scholar
  2. Bassler BL (1999) How bacteria talk to each other: regulation of gene expression by quorum sensing. Curr Opin Microbiol 2:582–587CrossRefPubMedGoogle Scholar
  3. Beechan CM, Sims JJ (1979) The first synthesis of fimbrolides, a novel class of halogenated lactones naturally occurring in the red seaweed Delisea fimbriata (Bonnemaisoniaceae). Tetrahedron Lett 19:1649–1652CrossRefGoogle Scholar
  4. Boopathi E, Rao KS (1999) A siderophore from Pseudomonas putida type A1: structural and biological characterization. Biochim Biophys Acta 1435:30–40CrossRefPubMedGoogle Scholar
  5. Chugani SA, Whiteley M, Lee KM, D’Argenio D, Manoil C, Greenberg EP (2001) QscR, a modulator of quorum-sensing signal synthesis and virulence in Pseudomonas aeruginosa. Proc Natl Acad Sci USA 98:2752–2757CrossRefPubMedGoogle Scholar
  6. Cox CD (1980) Iron uptake with ferripyochelin and ferric citrate by Pseudomonas aeruginosa. J Bacteriol 142:581–587PubMedGoogle Scholar
  7. Cox CD, Adams P (1985) Siderophore activity of pyoverdin for Pseudomonas aeruginosa. Infect Immun 48:130–138PubMedGoogle Scholar
  8. Darling P, Chan M, Cox AD, Sokol PA (1998) Siderophore production by cystic fibrosis isolates of Burkholderia cepacia. Infect Immun 66:874–877PubMedGoogle Scholar
  9. Davies DG, Parsek MR, Pearson JP, Iglewski BH, Costerton JW, Greenberg EP (1998) The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280:295–298CrossRefPubMedGoogle Scholar
  10. DeLisa MP, Valdes JJ, Bentley WE (2001) Quorum signaling via AI-2 communicates the “Metabolic Burden” associated with heterologous protein expression in Escherichia coli. Biotechnol Bioeng 75:439–450CrossRefPubMedGoogle Scholar
  11. Eberl L, Winson JJ, Sternberg C, Stewart GSAB, Christiansen G, Chhabra SR, Bycroft B, Williams P, Molin S, Givskov M (1996) Involvement of N-acyl-l-homoserine lactone autoinducers in controlling the multicellular behaviour of Serratia liquefaciens. Mol Microbiol 20:127–136PubMedGoogle Scholar
  12. Elasri M, Delorme S, Lemanceau P, Stewart G, Laue B, Glickmann E, Oger PM, Dessaux Y (2001) Acyl-homoserine lactone production is more common among plant-associated Pseudomonas spp. than among soil-borne Pseudomonas spp. Appl Environ Microbiol 67:1198–1209CrossRefPubMedGoogle Scholar
  13. Givskov M, de Nys R, Manefield M, Gram L, Maximilien R, Eberl L, Molin S, Steinberg PD, Kjelleberg S (1996) Eukaryotic interference with homoserine lactone-mediated prokaryotic signaling. J Bacteriol 178:6618–6622PubMedGoogle Scholar
  14. Gram L, de Nys R, Maximilien R, Givskov M, Steinberg P, Kjelleberg S (1996) Inhibitory effects of secondary metabolites from the red alga Delisea pulchra on swarming motility of Proteus mirabilis. Appl Environ Microbiol 62:4284–4287Google Scholar
  15. Hentzer M, Riedel K, Rasmussen TB, Heydorn A, Andersen JB, Parsek MR, Rice SA, Eberl L, Molin S, Høiby N, Kjelleberg S, Givskov M (2002) Inhibition of quorum sensing in Pseudomonas aeruginosa biofilm bacteria by a halogenated furanone compound. Microbiology 148:87–102PubMedGoogle Scholar
  16. Hentzer M, Wu H, Andersen JB, Riedel K, Rasmussen TB, Bagge N, Kumar N, Schembri MA, Song Z, Kristoffersen P, Manefield M, Costerton JW, Molin S, Eberl L, Steinberg P, Kjelleberg S, Høiby N, Givskov M (2003) Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. EMBO J 22:3803–3815CrossRefPubMedGoogle Scholar
  17. Hickey WJ, Focht DD (1990) Degradation of mono-, di-, and trihalogenated benzoic acids by Pseudomonas aeruginosa JB2. Appl Environ Microbiol 56:3842–3850PubMedGoogle Scholar
  18. Holloway B (1969) Genetics of Pseudomonas. Bacteriol Rev 33:419–443PubMedGoogle Scholar
  19. Lamont IL, Beare PA, Ochsner U, Vasil AI, Vasil ML (2002) Siderophore-mediated signaling regulates virulence factor production in Pseudomonas aeruginosa. Proc Natl Acad Sci USA 99:7072–7077CrossRefPubMedGoogle Scholar
  20. Lazazzera BA, Grossman AD (1998) The ins and outs of peptide signaling. Trends Microbiol 6:288–294CrossRefPubMedGoogle Scholar
  21. Lewenza S, Conway B, Greenberg EP, Sokol PA (1999) Quorum sensing in Burkholderia cepacia: identification of the LuxRI Homologs CepRI. J Bacteriol 181:748–756PubMedGoogle Scholar
  22. Manefield M, de Nys R, Kumar N, Read R, Givskov M, Steinberg P, Kjelleberg S (1999) Evidence that halogenated furanones from Delisea pulchra inhibit acylated homoserine lactone (AHL)-mediated gene expression by displacing the AHL signal from its receptor protein. Microbiology 145:283–291PubMedGoogle Scholar
  23. Manny AJ, Kjelleberg S, Kumar N, de Nys R, Read RW, Steinberg P (1997) Reinvestigation of the sulfuric acid-catalysed cyclisation of brominated 2-alkyllevulinic acids to 3-alkyl-5-methylene-2(5H)-furanones. Tetrahedron 53:15813–15826CrossRefGoogle Scholar
  24. Meyer JM, Abdallah MA (1978) The fluorescent pigment of Pseudomonas fluorescens: biosynthesis, purification and physicochemical properties. J Gen Microbiol 107:319–328Google Scholar
  25. Miller MB, Bassler BL (2001) Quorum sensing in bacteria. Annu Rev Microbiol 55:165–199CrossRefPubMedGoogle Scholar
  26. Moat AG, Foster JW (1995) Microbial physiology. Wiley-Liss, New YorkGoogle Scholar
  27. Ren D, Wood TK (2004) (5Z)-4-Bromo-5-(bromomethylene)-3-butyl-2(5H)-furanone reduces corrosion from Desulfotomaculum orientis. Environ Microbiol 6:535–540CrossRefPubMedGoogle Scholar
  28. Ren D, Sims JJ, Wood TK (2001) Inhibition of biofilm formation and swarming of Escherichia coli by (5Z)-4-Bromo-5-(Bromomethylene)-3-Butyl-2(5H)-Furanone. Environ Microbiol 3:731–736CrossRefPubMedGoogle Scholar
  29. Ren D, Bedzyk LA, Thomas SM, Ye RW, Wood TK (2004) Differential gene expression shows natural brominated furanones interfere with the autoinducer-2 bacterial signaling system of Escherichia coli. Biotechnol Bioeng (in press)Google Scholar
  30. Rice SA, Givskov M, Steinberg P, Kjelleberg S (1999) Bacterial signals and antagonists: the interaction between bacteria and higher organisms. J Mol Microbiol Biotechnol 1:23–31PubMedGoogle Scholar
  31. Shields MS, Montgomery SO, Chapman PJ, Cuskey SM, Pritchard PH (1989) Novel pathway of toluene catabolism in trichloroethylene-degrading bacterium G4. Appl Environ Microbiol 55:1624–1629Google Scholar
  32. Spain JC, Zylstra GJ, Blake CK, Gibson DT (1989) Monohydroxylation of phenol and 2.5 dichlorophenol by toluene dioxygenase in Pseudomonas putida F1. Appl Environ Microbiol 55:2648–2652PubMedGoogle Scholar
  33. Stintzi A, Evans K, Meyer J-M, Poole K (1998) Quorum-sensing and siderophore biosynthesis in Pseudomonas aeruginosa: lasR/lasI mutants exhibit reduced pyoverdine biosynthesis. FEMS Microbiol Lett 166:341–345CrossRefPubMedGoogle Scholar
  34. Whitehead NA, Barnard AML, Slater H, Simpson NJL, Salmond GPC (2001) Quorum-sensing in gram-negative bacteria. FEMS Microbiol Rev 25:365–404CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  1. 1.Departments of Chemical Engineering and Molecular & Cell BiologyUniversity of ConnecticutStorrsUSA
  2. 2.Chemical and Biomolecular EngineeringCornell UniversityIthacaUSA

Personalised recommendations